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Assumptions: ||x; — y|[, < A, forallz € {1,...,n}.
n

Client n
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Server's Goal: Estimate Sample Mean £: = — E ;.
n
i=1

Each client can send only (< d) bits.

Two settings:
1. The known setting, where A is known to everyone;

2. The unknown setting, where A is unknown to everyone.

Application: Important subroutine in several distributed learning
scenarios (e.g. gradient aggregation in Federated Learning).

Prior Work

1. The no side information case [1]:
> ||xi||y < 1, for all ¢ € [n], and no side information.

d
> Forany r € [d], MSE =~ © (—)

nr
2. The known setting [2]:

> Focuses on the high precision regime of » > d.
> Supoptimal results in the low precision regime (7 < d).

> Algorithm is computationally expensive.

Our Contributions

d
1. In the known A setting, M SE ~ © (A2 : —) :
nr

> Our results hold for x;, ¢ € [n], and y lying anywhere in R<.
d
2. In the unknown A setting, M SE ~ O (A : —) :

nr
> Qur results hold for @;, ¢ € [n], and y lying anywhere in the

unit Euclidean ball.
3. Our algorithms are nearly linear time.

Building block in the known setting: Modulo Quantizer

Modulo Quantizer [2], [3]: Parameters k & €.
Scalar input @ and side-information y such that |z — y| < A.
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Suppose k- € > A. Then, E[lz] =z and | — z| < e.

RMQ: Modulo Quantizer +Random Rotation

Input and Side Information: & and y such that ||z — y||, < A.
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1. Rotate @ and y using randomized Hadamard transform.

> Each coordinate of * — vy is subgaussian with a variance factor
A2
7.
2. For each coordinate, use Modulo Quantizer.

3. Bias-MSE Tradeoff:

3.1 Need the grid size € to be small for a smaller MSE.
3.2 Error Event | — y| 2 ke induces bias.
3.3 Optimize over k and £ to minimize overall MSE.

Putting it all together

» Wyner-Ziv Estimator in the known setting: For each client 2
1. Sample = 7 coordinates using public randomness (between

client and server).
2. Send encoded values of RMQ for those coordinates.

» Sample mean estimator: Average of the decoded estimates.

» Leads to the first main result.

cTats

Key Idea in Unknown Setting: Correlated Sampling Idea [4]

let xz,y € [0,1] and U ~ Unif|0,1].
Two different 1-bit estimators of a:

1. Liu<ay-

> E[I{Ugm}] = X.

> Var(]l{USw}) = x — x°.
2 X = Lweay— 1wy + -

> IE[X} = x.

> Var(X) = |z — y| — (z — y)*.

Possibility of distance-dependent bounds without its knowledge!

RDAQ: Correlated sampling with multple scales + Random Rot.

Input and Side Information: « and y s.t. max{||z||,, [|y|l.} < A.
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1. Rotate @ and y using randomized Hadamard transform.

2. Correlated sampling + Tetration idea of RATQ [5].

> MZ.ZJr1 ~ eMi (tetration).
> Use indep rvs {U (%) }ic[n), where U (2) ~ Unif|—M;, M;].
> Xi = 2M; (Lwi)<ay — Lu@<y@)) + Y-

> Use the smallest interval containing  and y.

Subsampled version of RDAQ gives the second main result.
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