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Assumptions: ‖xi − y‖2 ≤ ∆, for all i ∈ {1, . . . , n}.

Server’s Goal: Estimate Sample Mean x̄ : =
1

n

n∑
i=1

xi.

Each client can send only r(≤ d) bits.

Two settings:
1. The known setting, where ∆ is known to everyone;

2. The unknown setting, where ∆ is unknown to everyone.

Application: Important subroutine in several distributed learning
scenarios (e.g. gradient aggregation in Federated Learning).

Prior Work

1. The no side information case [1]:
. ‖xi‖2 ≤ 1, for all i ∈ [n], and no side information.

. For any r ∈ [d], MSE ≈ Θ

(
d

nr

)
.

2. The known setting [2]:
. Focuses on the high precision regime of r ≥ d.

. Supoptimal results in the low precision regime (r ≤ d).

. Algorithm is computationally expensive.

Our Contributions

1. In the known ∆ setting, MSE ≈ Θ

(
∆2 ·

d

nr

)
.

. Our results hold for xi, i ∈ [n], and y lying anywhere in Rd.

2. In the unknown ∆ setting, MSE ≈ O

(
∆ ·

d

nr

)
.

. Our results hold for xi, i ∈ [n], and y lying anywhere in the
unit Euclidean ball.

3. Our algorithms are nearly linear time.

Building block in the known setting: Modulo Quantizer

Modulo Quantizer [2], [3]: Parameters k & ε.
Scalar input x and side-information y such that |x− y| ≤ ∆.
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Encoder
1. zu = dx/εe, zl = bx/εc .
2.z̃ ={
zu, w.p. x/ε− zl

zl, w.p. zu − x/ε.
3.Output: z̃ mod k

Decoder
1. Input
w ∈ {0, . . . , k − 1}.
2. Output: x̂ = Point closest
to y in
{(zk + w) · ε : z ∈ Z}

Suppose k · ε & ∆. Then, E ˆ[x] = x and |x̂− x| ≤ ε.

RMQ: Modulo Quantizer +Random Rotation

Input and Side Information: x and y such that ‖x− y‖2 ≤ ∆.

-∆ ∆yx

0 51ε 2ε 3ε 4ε 6ε

1. Rotate x and y using randomized Hadamard transform.
. Each coordinate of x− y is subgaussian with a variance factor

∆2

d
.

2. For each coordinate, use Modulo Quantizer.

3. Bias-MSE Tradeoff:

3.1 Need the grid size ε to be small for a smaller MSE.
3.2 Error Event |x− y| & kε induces bias.
3.3 Optimize over k and ε to minimize overall MSE.

Putting it all together

I Wyner-Ziv Estimator in the known setting: For each client i

1. Sample ≈ r coordinates using public randomness (between
client and server).

2. Send encoded values of RMQ for those coordinates.

I Sample mean estimator: Average of the decoded estimates.

I Leads to the first main result.

———————————————————————–

Key Idea in Unknown Setting: Correlated Sampling Idea [4]

Let x, y ∈ [0, 1] and U ∼ Unif[0, 1].
Two different 1-bit estimators of x:

1. 1{U≤x}.
. E

[
1{U≤x}

]
= x.

. Var(1{U≤x}) = x− x2.

2. X̂ = 1{U≤x}−1{U≤y} + y.

. E
[
X̂
]

= x.

. Var(X̂) = |x− y| − (x− y)2.

Possibility of distance-dependent bounds without its knowledge!

RDAQ: Correlated sampling with multple scales + Random Rot.

Input and Side Information: x and y s.t. max{‖x‖2 , ‖y‖2} ≤ ∆.
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1. Rotate x and y using randomized Hadamard transform.

2. Correlated sampling + Tetration idea of RATQ [5].

. M2
i+1 ≈ eM

2
i (tetration).

. Use indep rvs {U(i)}i∈[h], where U(i) ∼ Unif[−Mi,Mi].

. X̂i = 2Mi

(
1{U(i)≤x(i)} − 1{U(i)≤y(i)}

)
+ y.

. Use the smallest interval containing x and y.

Subsampled version of RDAQ gives the second main result.

References

1. Suresh, A. T., Felix, X. Y., Kumar, S., & McMahan, H. B. (2017, July).
Distributed mean estimation with limited communication. In International
Conference on Machine Learning (pp. 3329-3337). PMLR.

2. Davies, P., Gurunathan, V., Moshrefi, N., Ashkboos, S., & Alistarh, D. (2020).
Distributed Variance Reduction with Optimal Communication. arXiv preprint
arXiv:2002.09268.

3. Forney, G. D. (1988). Coset codes. I. Introduction and geometrical classification.
IEEE Transactions on Information Theory, 34(5), 1123-1151.

4. Holenstein, T. (2007, June). Parallel repetition: simplifications and the
no-signaling case. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing (pp. 411-419).

5. Mayekar, P., & Tyagi, H. (2020, June). RATQ: A universal fixed-length quantizer
for stochastic optimization. In International Conference on Artificial Intelligence
and Statistics (pp. 1399-1409). PMLR.


