Wyner-Ziv Estimators: Efficient Distributed Mean Estimation with Side Information

AISTATS 2021

Prathamesh Mayekar, Indian Institute of Science
Ananda Theertha Suresh, Google
Himanshu Tyagi, Indian Institute of Science

The Setup

Server

Side Information y

Assumptions: $\left\|x_{i}-y\right\|_{2} \leq \Delta$, for all $i \in\{1, \ldots, n\}$.

The Setup

Server

Side Information y

Assumptions: $\left\|x_{i}-y\right\|_{2} \leq \Delta$, for all $i \in\{1, \ldots, n\}$.
Server's Goal: Estimate Sample Mean $\bar{x}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

The Setup

Server

Assumptions: $\left\|x_{i}-y\right\|_{2} \leq \Delta$, for all $i \in\{1, \ldots, n\}$.
Server's Goal: Estimate Sample Mean $\bar{x}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Each client can send only r bits.

The Setup

Server

Assumptions: $\left\|x_{i}-y\right\|_{2} \leq \Delta$, for all $i \in\{1, \ldots, n\}$.
Server's Goal: Estimate Sample Mean $\bar{x}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Each client can send only r bits.
Two settings:

1. The known setting, where Δ is known to everyone;
2. The unknown setting, where Δ is unknown to everyone.

Our Contributions

Prior Work: The no side information case [Suresh et al. 17]

- $\left\|x_{i}\right\|_{2} \leq 1$, for all $i \in[n]$, and no side information.
- For any $r \in[d], M S E \approx \Theta\left(\frac{d}{n r}\right)$.

Our Contributions

Prior Work: The no side information case [Suresh et al. 17]

- $\left\|x_{i}\right\|_{2} \leq 1$, for all $i \in[n]$, and no side information.
- For any $r \in[d], M S E \approx \Theta\left(\frac{d}{n r}\right)$.

Main Results:

1. In the known Δ setting, $M S E \approx \Theta\left(\Delta^{2} \cdot \frac{d}{n r}\right)$.

Our Contributions

Prior Work: The no side information case [Suresh et al. 17]

- $\left\|x_{i}\right\|_{2} \leq 1$, for all $i \in[n]$, and no side information.
- For any $r \in[d], M S E \approx \Theta\left(\frac{d}{n r}\right)$.

Main Results:

1. In the known Δ setting, $M S E \approx \Theta\left(\Delta^{2} \cdot \frac{d}{n r}\right)$.
2. In the unknown Δ setting, $M S E \approx O\left(\Delta \cdot \frac{d}{n r}\right)$.

Our Contributions

Prior Work: The no side information case [Suresh et al. 17]

- $\left\|x_{i}\right\|_{2} \leq 1$, for all $i \in[n]$, and no side information.
- For any $r \in[d], M S E \approx \Theta\left(\frac{d}{n r}\right)$.

Main Results:

1. In the known Δ setting, $M S E \approx \Theta\left(\Delta^{2} \cdot \frac{d}{n r}\right)$.
2. In the unknown Δ setting, $M S E \approx O\left(\Delta \cdot \frac{d}{n r}\right)$.
3. Our algorithms are nearly linear time.

Thank You!

