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Abstract

The goal of this thesis is to study the compression problems arising in distributed computing

systematically.

In the first part of the thesis, we study gradient compression for distributed first-order

optimization. We begin by establishing information theoretic lower bounds on optimization

accuracy when only finite precision gradients are used. Also, we develop fast quantizers for

gradient compression, which, when used with standard first-order optimization algorithms,

match the aforementioned lower bounds.

In the second part of the thesis, we study distributed mean estimation, an important

primitive for distributed optimization algorithms. We develop efficient estimators which

improve over state of the art by efficiently using the side-information present at the center.

We also revisit the Gaussian rate-distortion problem and develop efficient quantizers for

this problem in both the side-information and the no side-information setting.

Finally, we study the problem of entropic compression of the symbols transmitted by

the edge devices to the center, which commonly arise in cyber-physical systems. Our goal

is to design entropic compression schemes that allow the information to be transmitted in a

’timely’ manner, which, in turn, enables the center to have access to the latest information

for computation. We shed light on the structure of the optimal entropic compression

scheme and, using this structure, we develop efficient algorithms to compute this optimal

compression scheme.
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Notation

1. Sets

(a) Rd is the set of d dimensional vectors, where each coordinate can take any value

on the real line.

(b) Z is the set of integers.

(c) N is the set of positive integers.

(d) [n] := {1, . . . , n} is the set of number from 1 to n.

(e) |X | is the cardinality of a discrete set X .

(f) {e1, . . . , ed} is the Euclidean basis of Rd, where ei is a d-dimensional vectors

with i coordinate equal to 1 and rest of the coordinates equal to 0.

2. Random Variables and Events

(a) pmf is Probability mass function.

(b) pdf is Probability density function.

(c) iid is Independent and identically distributed.

(d) P (A) is Probability of event A.

(e) E[Z] is Expectation of the random variable Z.

3. Norms

(a) ‖x‖p := ∑
i∈[d](|x(i)|p)1/p is the `p-norm of x ∈ Rd .

(b) ‖X‖p = E [|X|p]1/p is the Lp norm of a random variable X.

vi



Notation vii

(c) Throughout the paper, q denotes the Hölder conjugate of p (that is, 1
p

+ 1
q

= 1).

4. Logarithms

(a) The logarithm to the base 2 is denoted by log a and the logarithm to the base

e is denoted by ln a. All the information theoretic measures considered in this

paper – such as Entropy, Rényi divergence, Kullback-Leibler divergence, and

Mutual Information – are defined with logarithm to the base 2.

(b) The iterated logarithms log∗(a) and ln∗(a) are defined as the number of times

log and ln must be iteratively applied to a before the result is at most 1.

5. Maximum and minimum

(a) We write a ∨ b and a ∧ b for max{a, b} and min{a, b}, respectively.



Chapter 1

Overview

The recent years have witnessed a monumental rise in the data available for machine

learning applications. For instance, ImageNet ([21]), a publicly available image database,

has over fourteen million images, all available to train machine learning models. Closely

mimicking the data rise is the aspiration to build more capable and accurate machine

learning models. This, in turn, has led to the ever-increasing computing power needed to

train sophisticated deep learning models. For instance, the ResNet ([41]) architectures

trained on the ImageNet database can have roughly 20-60 million trainable parameters.

One approach to ensure fast training of such sophisticated models is to employ distributed

optimization methods, where at each iteration, workers quantize and share their updates,

stochastic gradients, with other workers or the center. However, while this distributed

optimization approach has enjoyed popularity recently, the precise effect quantization has

on convergence rates is not entirely understood.

A related problem is that of federated learning ([49]). Federated learning is a machine

learning paradigm where models are built from decentralized data residing on mobile

devices while preserving the privacy of the data. A few of the devices share their stochastic

gradient updates with the center in a typical iteration of a federated learning algorithm.

In low bandwidth scenarios, efficiently quantizing these updates becomes crucial. Thus,

understanding the tradeoff between the precision to which gradients are quantized and the

convergence rate becomes crucial in designing efficient federated learning algorithms.

1



Chapter 1. Overview 2

Finally, the problem of timely dissemination of information has become increasingly

important in modern cyber-physical systems. For instance, consider the problem of control

of the network of autonomous vehicles. In such a setting timely update of the vehicle

state becomes exceptionally crucial. In such problems, designing compression specifically

tailored to the application of timeliness is crucial.

Keeping in mind the applications listed above, the thesis considers the following three

problems:

1. Communication-Constrained First-Order Optimization,

2. Efficient Quantization for Federated Learning Primitives,

3. Source Coding Schemes for Timeliness.

The first two parts of the thesis are dedicated to studying the distributed optimization

scenarios listed above. In the first part of the thesis, we build a theory for a distributed

optimization setting where the stochastic gradients are quantized to a given precision.

The quantization algorithms we develop in this part improve over the state-of-the-art

algorithms in many settings. In the second part of the thesis, we revisit primitives often

used Federated Learning: 1) Distributed Mean Estimation 2) Gaussian Quantization. We

build communication-efficient primitives for both these problems. In the final part of the

thesis, we design entropic compression schemes to ensure timely update of information.

1.1 Communication-Constrained First-Order Optimiza-

tion

In the first part of the thesis, we study a refinement of the classic query complexity model

of Nemirovsky and Yudin ([71]). In our refinement, the gradient estimates supplied by the

first-order oracle are not directly available to a first-order optimization algorithm but must

pass through a channel, and only the output of the channel is available to the optimization

algorithm. While we introduced this refinement to study the effect of communication

constraints on convergence rate, the channel can also be used to model various other
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information constraints such as local differential privacy constraints and computational

constraints.

In Chapter 2, we derive lower bounds on the optimization error of any first-order

optimization algorithm where it only has access to compressed gradients. In Theorem

2.4.4 and 2.4.5, we show that for the optimization of convex and `p lipschitz family, any

optimization algorithm using gradients compressed to r bits would lead to the following

blow-up over the classic convergence rate: for p ∈ [1, 2), we see a blow-up of
√

d

min{d, r} ;

for p ∈ [2,∞], we see a blow-up of
√ d

d ∧ 2r

 ∨
√ d2/p

d ∧ r

 , where d is the ambient

dimension. Our lower bounds also extend to the class of strongly convex and `2 lipschitz

function, which were missing in the literature of information-constrained optimization. For

example, in Theorem 2.4.6, we show that for the optimization of strongly convex and `2

lipschitz function, any optimization algorithm using gradients compressed to r bits would

lead to a blow-up of at least d
min{d,r} over the classic convergence rate.

In Chapter 2, we also derive lower bounds for local differential privacy constraints

and computational constraints in Theorems 2.4.1, 2.4.2, and Theorems 2.4.3 and 2.4.7

and 2.4.8, respectively. In fact, our lower bounds allows us to establish optimality of the

popular random coordinate descent algorithm for convex and `2 lipschitz family, when

there is a computational constraint of computing just one coordinate.

Finally, all the lower-bounds derived in Chapter 2 allow for adaptive processing of

gradients, while the previous literature on information-constrained optimization restricts

to non-adaptive protocols. That is, the channel used to process the gradients at a given

iteration can be chosen as a function of the information received at the previous iteration.

However, as we see in the compressing schemes derived in the next chapters and privacy

protocols employed in the literature, the non-adaptive processing of gradients is sufficient

to match the lower bounds.

Our proof of lower bounds refines the recipe of [5] and reduces the problem of lower

bounding optimization error to that of upper bounding a mutual information term. The

mutual information term then can be bounded by taking recourse to recent strong data

processing inequalities in [3]. The key observation in our proof is that we only need to
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bound a coordinate-wise average mutual information term compared to the larger total

mutual information considered in [5]. This allows our recipe to be applicable in settings

where the recipe in [5] may not be suitable.

In Chapter 3, we focus on developing optimal quantizers to match lower bounds derived

in Chapter 2 for convex and `2 lipschitz functions and strongly convex and `2 lipschitz

functions. Since we assume that the gradient estimates’ have their Euclidean distance

almost surely bounded, this problem essentially reduces to developing efficient quantizers

for input vector Y such that

Y ≤ B2 a.s..

Our main contribution in this chapter is a quantizer RATQ used to quantize such input

vectors Y . In Corollary 3.4.3, we show that employing RATQ to compress the gradients

along with the optimization algorithm projected stochastic gradient descent (PSGD)

requires precision of d log log log log∗ d bits to attain the convergence rate of the classic,

unrestricted setting for convex, or strongly convex, and `2 lipschitz function family. This

factor differs by only a minuscule log log log log∗ d from the lower bounds of Ω(d) on the

precision necessary to attain the convergence of classic setting. Moreover, in Corollary

3.4.5, we show that employing a subsampled version of RATQ along with PSGD leads to

almost optimal convergence rate, thus matching the lower bounds established in Chapter

2 for both convex and strongly convex functions, which are also `2 lipschitz.

In fact, our quantizer RATQ is part of a general family of quantizers called adaptive

quantizers. An adaptive quantizer uses multiple dynamic ranges, {[−Mi,Mi] : i ∈ [h]},

to quantize the input. Once a dynamic range is chosen, the input is quantized uniformly

within it using k uniform level. In designing RATQ, we stumble upon the following formula

for the mean square error of the adaptive quantizer:

O

(∑
i∈[h] M

2
i .p(Mi−1)

(k − 1)2

)
,

where p(M) is the probability of the input vector exceeding the value M. This formula

guides the design of all of our subsequent adaptive quantizers.
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Before adaptively quantizing an input, RATQ first preprocesses the input by randomly

rotating it. Random rotation allows the input data to be "evenly" distributed across all the

coordinates and gives us a handle over the data distribution. This classic idea of Random

rotation is also crucial to many of our subsequent quantizers.

Then in Chapter 3, we relax the almost sure assumption on gradient estimates noise

and study a general noise model for noisy gradient estimate where the expected Euclidean

norm square of the estimates’ output is bounded, termed the mean square noise model. We

show the theoretical limitations imposed by quantizers for such noise models that do not

quantize the norm carefully. We do this by deriving a lower bound on optimization error

in Theorems 3.5.3 and 3.5.4, when a popular class of quantizers that quantize the gradient

norm uniformly is employed. Our lower bound relies on a novel heavy-tailed construction

which may be of independent interest. We then present a fixed-length, gain-shape variant

of our quantizer RATQ, termed A-RATQ. In A-RATQ, the norm (the gain) of the input

is quantized by employing another adaptive quantizer and the input normalized by the

norm (the shape) is quantized by employing RATQ. In Corollaries 3.5.7 and 3.5.9, we show

that A-RATQ along with PSGD almost matches the best possible performance for this

mean square noise model. Finally, we present a variable-length update to A-RATQ. This

variable-length version further improves the performance of A-RATQ but only satisfies

the precision constraint in expectation.

In Chapter 4, we develop quantizers to match the lower bounds for communication-

constrained optimization of convex and `p lipschitz family. Our results in this Chapter are

primarily restricted to the high-precision regime. That is, we characterize the minimum

precision needed by optimal quantization and optimization algorithms so that optimization

with compressed gradient achieves the convergence of the classic, unrestricted setting.

In Theorem 4.4.1, we show that for optimization of convex and `p lipschitz family with

compressed gradients, if the gradients are compressed to a precision of d2/p ∨ log d, for

p ∈ [2,∞], and d, for p ∈ [1, 2), we can attain the convergence rate of the classic,

unrestricted setting. The necessity of this precision follows from the lower bound on

optimization error derived in Chapter 2; for sufficiency, we construct new quantizers. For
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p ∈ [2,∞], we propose a Quantizer SimQ+ which along with PSGD exactly matches the

lower bounds for p = 2 and p =∞, and is only a logarithmic factor away from the lower

bound for p ∈ (2,∞). Interestingly, for p = ∞, compressing the gradients to only log d

bits using SimQ+ and then employing PSGD with compressed gradients is sufficient to

achieve the convergence of the classic case. Thus, this improves upon the precision required

by RATQ and PSGD, d log log log log∗ d, in the high-precision regime. For p ∈ [1, 2),

we propose another variant of RATQ, which, combined with appropriate mirror descent

algorithms, is almost optimal.

In its simplest form, SimQ+ represents the input in terms of the corner points of the `1

ball containing it. To achieve further compression, SimQ+ uses a “type” based compression

technique. We will use this type-based compression idea in some of our later schemes, too.

1.2 Efficient Quantization for Federated Learning Prim-

itives

In Chapter 5, we study the primitive of distributed mean estimation. This primitive is a

crucial subroutine in distributed learning scenarios when the server uses the average of

updates from multiple clients. [88] considered a version of this problem where n clients

communicate a quantized version of their update to the server, where the total precision

of the quantized version can be at the most r bits. The center uses the quantized versions

from all the clients to estimate the sample mean of the data. A lower bound of d

nr
was

established on the mean square error (MSE) between the actual sample mean and the

estimated sample mean. [88] also proposed a quantization procedure that matches this

lower bound up to log log d factor. In Theorem 5.4.1, we derive the best known upper

bound on MSE, which is tight up to a log ln∗ d factor from the lower bound. Our scheme

uses the quantizer RATQ from Chapter 3.

Then, motivated by the fact that in many federated learning scenarios, the server also

has access to some side-information, we propose and study distributed mean estimation

where the server also has access to side-information. We study this problem in two different
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settings: 1) the distance between the update and the side-information is known to the

clients and the server; 2) the distance between the update and the side-information is

unknown to all, the universal setting. For the first setting, we propose a quantizer RMQ

and show in Theorem 5.5.4 that it results in an overall MSE of roughly d∆2

nr
, where ∆2 is

the distance between the client’s update and the respective side-information at the server.

Thus, we can break the lower bound of no side-information setting using side-information,

as long as ∆ ≤ 1. Our quantizer RMQ first preprocesses the update using Random

rotation like RATQ and then uses a modulo quantizer for each coordinate. Coming to

the unknown setting, we propose a quantizer RDAQ and show in Theorem 5.6.4 that

results in an overall MSE of roughly d∆
nr
. Thus, we can again break the lower bound of

the no side-information case with accurate side-information. Our quantizer RDAQ first

preprocesses the updates by randomly rotating them and then uses the idea of correlated

sampling to provide MSE bounds dependent on the distance without the knowledge of the

distance.

In Chapter 6, we the revisit the Gaussian rate-distortion problem and show that the

quantization schemes from earlier Chapters are almost optimal while being efficient for

this problem. In Theorem 6.3.1, we show that a subroutine of RATQ attains a rate

very-close to the Gaussian rate-distortion function while being computationally feasible

relative to the optimal coding scheme. In Theorem 6.4.1, we show that the simple modulo

quantizer achieves a rate close to the rate-distortion function for the version of Gaussian

rate-distortion problem with side–information.

1.3 Source Coding for Timeliness

In the final part of the thesis, we study a source coding problem to facilitate the timely

dissemination of information. This study focuses on communication systems where the

time to transmit information is directly proportional to its code length, and the receiver

needs to be apprised about only the latest information. Based on the age of information

metric proposed in [50], we measure the performance of our schemes by the average age of

information. For information received at time t which was generated at time U(t) ≤ t, the
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age of information at the receiver is t− U(t). Our goal is to come up with coding schemes

which minimize the average age

lim sup
T→∞

1
T

T∑
t=1

t− u(t).

In Theorem 7.3.2, we show that the average age equals

E [L] + E [L2]
2E [L] −

1
2 .

Our proof relies on the modification of the standard renewal reward theorem. We then

show in Example 7.3.5 that standard prefix-free coding schemes such as Shannon codes can

be suboptimal by as far as O(log |X |) for these problems, where |X | is the cardinality of

the information. Our main result is Theorem 7.5.1, where we show that the optimal source

coding scheme for minimizing average age is Shannon coded corresponding to distribution,

which is a tilting of the original distribution. Our proof relies on linearizing the average

cost, which, in turn, relies on a variational formula for Lp norm of a random variable.

We then extend our recipe of linearizing the cost and identifying the structure of

optimal coding schemes to design source coding schemes to minimize the average delay. In

Theorem 7.7.4, we show that the optimal source coding scheme here, too, is a Shannon

code for the tilting of the original distribution.



Part I

Communication-Constrained

First-Order Optimization

9



Chapter 2

Lower Bounds for

Information-Constrained

Optimization

2.1 Synopsis

We revisit first-order optimization under local information constraints such as communica-

tion, local privacy, and computational constraints limiting access to a few coordinates of

the gradient. In this setting, the optimization algorithm is not allowed to directly access

the complete output of the gradient oracle, but only gets limited information about it

subject to the local information constraints. We consider optimization for both convex and

strongly convex functions and obtain tight or nearly tight lower bounds for the convergence

rate under all three information constraints.

The results presented in this chapter are from [2].

2.2 Introduction

Distributed optimization has emerged as a central tool in federated learning for building

statistical and machine learning models for distributed data. In addition, large scale

10
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optimization is typically implemented in a distributed fashion over multiple machines or

multiple cores within the same machine. These distributed implementations fit naturally

in the oracle framework of first-order optimization (see [71]) where in each iteration a user

or machine computes the gradient oracle output. Due to practical local constraints such as

communication bandwidth, privacy concerns, or computational issues, the entire gradient

cannot be made available to the optimization algorithm. Instead, the gradients must be

passed through a mechanism which, respectively, ensures privacy of user data (local privacy

constraints); or compresses them to a small number of bits (communication constraints);

or only computes a few coordinates of the gradient (computational constraints). Motivated

by these applications, in this chapter, we derive lower bounds on first-order optimization

under such constraints. While our focus in the rest of the chapters would be to achieve

these lower bounds for communication constraints.

When designing a first-order optimization algorithm under local information constraints,

one not only needs to design the optimization algorithm itself, but also the algorithm

for local processing of the gradient estimates. Many such algorithms have been proposed

in recent years; see, for instance, [24], [1], [6], [33], [86], [37], and the references therein

for privacy constraints; [83], [9], [88], [52], [28], [78], [58], [4], [17], [46], [82], [35], [38]

and the references therein for communication constraints; [73, 80] for computational

constraints. However, these algorithms primarily consider nonadaptive procedures for

gradient processing (with the exception of [28]): that is, the scheme used to process

the gradients at any iteration cannot depend on the information gleaned from previous

iterations. In this chapter, we derive lower bounds for optimization under a much larger

class of adaptive gradient processing protocols. As a result, we answer the following open

question in this part of the thesis.

Can adaptively processing gradients improve convergence in information-constrained

optimization?

For optimization of both convex and strongly convex function families and under the

three different local constraints mentioned above – local privacy, communication, and

computational – we answer this question in the negative.
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That is, adaptive processing of gradients has no clear advantage over non-adaptive

processing for convex or strongly convex optimization under information-constraints.

2.2.1 Main contributions

We model the information constraints using a family of channels W ; see Section 2.3.3 for a

description of the channel families corresponding to our constraints of interest. We consider

first-order optimization where the output of the gradient oracle must be passed through a

channel W selected from W . Specifically, the gradient is sent as input to this channel W ,

and the algorithm receives the output of the channel. In each iteration of the algorithm,

the channel to be used in that iteration can be selected adaptively based on previously

received channel outputs by the algorithm; or channels to be used throughout can be fixed

upfront, nonadaptively. The detailed problem setup is given in Section 2.3.1. We obtain

general lower bounds for optimization of convex and strongly convex functions using W ,

when adaptivity is allowed. These bounds are then applied to the specific constraints of

interest to obtain our main results.

In terms of overall contribution of this part of this thesis, we show that adaptive

gradient processing does not help for some of the most typical first-order optimization

problems under information constraints. Namely, we prove that for most regimes of local

privacy, communication, or computational constraints, adaptive gradient processing has

nearly the same convergence rate as nonadaptive gradient processing for both convex

and strongly convex function families. As a consequence, this shows that the nondaptive

LDP algorithms from [24] and nonadaptive compression protocols we develop in Chapters

3 and 4 are (nearly) optimal for private and communication-constrained optimization,

respectively, even if adaptive gradient processing is allowed. In another direction, under

computational constraints, where we are allowed to compute only one gradient coordinate,

we show that standard Random Coordinate Descent (cf. [15, Section 6.4]), which employs

uniform (nonadaptive) sampling of gradient coordinates, is optimal for both the convex

and strongly convex function families. This proves that adaptive sampling of gradient

coordinates does not improve over nonadaptive sampling strategies.
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2.2.2 Remarks on techniques

Without information constraints, [5] provides a general recipe for proving oracle complexity

lower bounds for convex optimization. Specifically, it reduces optimization problems with

a first-order oracle to a mean estimation problem whose probability of error is lower

bounded using Fano’s method (cf. [95]). While our work, too, relies on a reduction to

mean estimation, we deviate from the prior approach, using Assouad’s method instead to

prove lower bounds for various function families. This different approach, in turn, enables

us to derive lower bounds for adaptive processing of gradients. We then combine our

Assouad’s type reduction with upper bounds on mutual information derived in [3], which

crucially hold for adaptive protocols.

We note that the prior work in information-constrained optimization – primarily,

locally private optimization – concerned itself with the family of convex functions, with no

lower bounds known for the more restricted family of strongly convex functions, even for

nonadaptive gradient processing protocols. The key obstacle is the fact that during the

reduction from optimization to mean estimation, the known hard instance for the strongly

convex family, even when analyzed for nonadaptive protocols, leads to an estimation

problem using adaptive protocols; and thus the lack of known lower bounds for adaptive

information-constrained estimation prevented this approach from succeeding. In more

detail, this hard instance has gradients that can depend on the query point which in turn

can be chosen based on previously observed channel outputs, an issue which does not arise

in the case of the convex family where the lower bounds are derived using affine functions

for which the gradients do not depend on the query point. We manage to circumvent this

issue by relying on our different Assouad-type reduction.

2.2.3 Prior work

The framework we consider can be viewed as an extension of the classical query complexity

model in [71]. We refer the reader to textbooks and monographs [15,70,73] for a review of

the basic setup. In the information-constrained setting, motivated by privacy concerns, [24]

consider the problem where the gradient estimates must pass through a locally differentially
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private (LDP) channel. However, in their setting the LDP channels for all time steps are

selected at the start of optimization algorithm – in other words, the channel selection

strategy is nonadaptive. In contrast, we allow for adaptive channel selection strategies

(as well as other information constraints); as a result, the lower bounds established in

these papers do not apply to our setting, and are more restrictive than our bounds. The

results of Duchi and Rogers [26] for Bernoulli product distributions could be combined

with our construction to obtain tight lower bounds for optimization in p ∈ [1, 2] under

LDP constraints, but would not extend to the entire range of p. The work of Braverman,

Garg, Ma, Nguyen, and Woodruff [14] on communication constraints, also for p ∈ [1, 2], is

relevant as well; however, their bounds on mutual information cannot be applied directly,

as their setting (Gaussian distributions) would not satisfy our almost sure gradient oracle

assumption. [28] provide adaptive quantization schemes for convex and `2 Lipschitz

function family. While the worst-case convergence guarantees for the quantizers in [28] are

similar to those in [9], it shows some practical improvements over the state-of-the-art for

some specific problem instances. This suggests that while adaptive quantization may not

help in the worst case for non-smooth convex and strongly convex optimization, it may be

useful for a smaller subclass of convex optimization problems.

Organization

The rest of the chapter is organized as follows. After formally introducing in Section 2.3 the

setting, the function classes considered (convex and strongly convex), and the information

constraints we are concerned with, we state and discuss our lower bounds in Section 2.4.

Proofs of these lower bounds are given in Section 2.5.

2.3 Setup and preliminaries

2.3.1 Optimization under information constraints

We consider the problem of minimizing an unknown convex function f : X → R over its

domain X using oracle access to noisy subgradients of the function. That is, the algorithm
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Algorithm π
First Order
Oracle O Update xt

xt

ĝ(xt)

(a) Classical first-order optimization

Algorithm π

Update xt

First Order
Oracle O

xt

Wt

ĝ(xt) Yt

Yt | ĝ(xt) ∼ Wt(· | ĝ(xt))

Wt

(b) Information-constrained optimization with adaptive gradient processing.

Algorithm π

Update xt

First Order
Oracle O

xt

ĝ(xt) Yt

Yt | ĝ(xt) ∼ Wt(· | ĝ(xt))

Wt

(c) Information-constrained optimization with nonadaptive gradient processing.
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is not directly given access to the function but can get subgradients of the function at

different points of its choice. This class of optimization algorithms includes various descent

algorithms, which often provide optimal convergence rate among all the algorithms in this

class (cf. [71]).

In our setup, gradient estimates supplied by the oracle must pass through a channelW ,1

chosen by the algorithm from a fixed set of channels W , and the optimization algorithm π

only has access to the output of this channel. The channel family W represents information

constraints imposed in our distributed setting. In detail, the framework is as follows:

1. At iteration t, the first-order optimization algorithm π makes a query for point xt to

the oracle O.

2. Upon receiving the point xt, the oracle outputs ĝ(xt), where E [ĝ(xt) | xt] ∈ ∂f(xt)

and ∂f(xt) is the subgradient set of function f at xt.

3. The subgradient estimate ĝ(xt) is passed through a channel Wt ∈ W and the output

Yt is observed by the first-order optimization algorithm. The algorithm then uses all

the messages {Yi}i∈[t] to further update xt to xt+1.

Let ΠT be the set of all first-order optimization algorithms that are allowed T queries to

the oracle O and after the tth query gets back the output Yt with distribution Wt(· | ĝ(xt)).

Our goal is to select gradient processing channels Wts and an optimization algorithm

π to guarantee a small worst-case optimization error. Two classes of channel selection

strategies are of interest: adaptive and nonadaptive.

Definition 2.3.1. Under adaptive gradient processing, the channel Wt selected at time

t may depend on the previous outputs of channels {Wi}i∈[t−1]. Specifically, denoting by

Yt the output of the channel used at time t, which takes values in the output alphabet

Yt, the adaptive channel selection strategy S := (S1, . . . , ST ) over T iterations consists of

1A channel W with input alphabet X and output alphabet Y, denoted W : X → Y, represents the
conditional distribution of the output of a randomized function given its input. In particular, W (· | x) is
the conditional distribution of the channel given that the input is x ∈ X .
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mappings St : Y t−1 →W that take Y1, . . . Yt−1 as input and output a channel Wt ∈ W as

output. We write SW,T for the collection of all such channel selection strategies.

Definition 2.3.2. Under nonadaptive gradient processing all the channels {Wt}t∈[T ]

through which the gradient estimates must pass are decided at the start of the opti-

mization algorithm. In other words, conditioned on the shared randomness, the channel

Wt is selected independently of all the gradient observations received by the optimization

algorithm until step t. Denote the class of all nonadaptive strategies by SNA
W,T .

Figures 2.1a, 2.1b, and 2.1c, describe the classical optimization framework, information-

constrained optimization under adaptive gradient processing, and information-constrained

optimization under nonadaptive gradient processing, respectively.

We measure the performance of an optimization protocol π and a channel selection

strategy S for a given function f and oracle O using the metric E(f,O, π, S) defined as

E(f,O, π, S) = E
[
f(xT )−min

x∈X
f(x)

]
, (2.1)

where the expectation is over the randomness in xT .

For various function and oracle classes, denoted by O, the channel constraint family

W , and the number of iterations T , we will characterize the adaptive minmax optimization

error

E∗(X ,O, T,W) = inf
π∈ΠT

inf
S∈SW,T

sup
(f,O)∈O

E(f,O, π, S) , (2.2)

and the corresponding nonadaptive minmax optimization error

ENA∗(X ,O, T,W) = inf
π∈ΠT

inf
S∈SNA

W,T

sup
(f,O)∈O

E(f,O, π, S) . (2.3)

Since the adaptive channel selection strategies include the nonadaptive ones, we have

ENA∗(X ,O, T,W) ≥ E∗(X ,O, T,W).

2.3.2 Function classes

We now define the function classes and the corresponding oracles that we consider.
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Convex and `p Lipschitz function family. Our first set of function families are

parameterized by a number p ∈ [1,∞]. Throughout, we restrict ourselves to convex

functions over a domain X , i.e., functions f satisfying

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ X , ∀λ ∈ [0, 1]. (2.4)

Further, for a family parameterized by p, we assume that the subgradient estimates

returned by the first-order oracle for a function f satisfy the following two assumptions:

E [ĝ(x) | x] ∈ ∂f(x), (Unbiased estimates) (2.5)

Pr
(
‖ĝ(x)‖2

q ≤ B2 | x
)

= 1, (Bounded estimates) (2.6)

where ∂f(x) is the set of subgradient for f at x and q := p/(p− 1) is, as mentioned earlier,

the Hölder conjugate of p.

Definition 2.3.3 (Convex and `p Lipschitz function family Oc,p). We denote by Oc,p the

set of all pairs of functions and oracles satisfying Assumptions (2.4), (2.5), and (2.6).

We note that (2.5) is standard in stochastic optimization literature (cf. [71], [70], [15],

[5]). To prove convergence guarantees on first-order optimization in the classic setup (with-

out any information constraints on the oracle), it is enough to assume E
[
‖ĝ(x)‖2

q

]
≤ B2.

We make a slightly stronger assumption in this case since the more relaxed assumption

leads to technical difficulties in finding unbiased quantizers for gradients.

Note that by (2.5) and (2.6) for every x ∈ X there exists a vector g ∈ ∂f(x) such

that ‖g‖q ≤ B. Further, since f is convex, f(x)− f(y) ≤ gT (x− y) for every g ∈ ∂f(x),

whereby |f(x)− f(y)| ≤ B‖x− y‖p. Namely, f is B-Lipschitz continuous in the `p norm.2

Before proceeding, we recall the optimal convergence results under no information

constraints. No information constraints can be viewed as passing the subgradients estimates

through the identity channel.

2The same could be said under the weaker assumption E
[
‖ĝ(x)‖2

q

]
≤ B2.
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Definition 2.3.4. We denote by I : Rd → Rd the identity channel, where the output

always equals the input. Let I denote the singleton set consisting only of I.

Theorem 2.3.5. Let Xp(D) := {X ⊆ Rd : maxx,y∈X ‖x− y‖p ≤ D}. There exist absolute

constants c0 and c1 where c1 ≥ c0 > 0 such that the following hold:

1. for3 2 > p ≥ 1,

c1DB
√

log d√
T

≥ sup
X∈Xp(D)

E∗(X ,Oc,p, T, I) ≥ c0DB√
T
.

2. For p ≥ 2,

c1d
1/2−1/pDB√

T
≥ sup
X∈Xp(D)

E∗(X ,Oc,p, T, I) ≥ c0d
1/2−1/pDB√

T
;

The lower bounds and the upper bounds can be found, for instance, in [5, Theorem 1] and

[5, Appendix C].

Remark 1. An optimal achievable scheme for p ∈ [1, 2) is the stochastic mirror descent

with the mirror maps ‖x‖2
p′/(p′ − 1), where p′ is chosen appropriately for a given p. When

Hölder conjugate q of p is o(log d), we choose p′ to be p. When q is Ω(log d), we choose

p′ = 2 log d
2 log d−1 . Further, these algorithms require only that the expected squared `q norm of

the gradient estimates are bounded.

Remark 2. An optimal achievable scheme for p greater than 2 is simply projected subgradi-

ent descent(PSGD). To see this, note that PSGD gives a guarantee of D′B′/
√
T (cf. [70]),

where D′ is the `2 diameter and B′ is the bound on E [‖ĝ‖2
2]. Using the monotonicity of `q

norms in q, for q ≥ 2 we have E [‖ĝ‖2
2] ≤ E

[
‖ĝ‖2

q

]
≤ B2. Also, the `2 diameter of a unit `p

ball is d1/2−1/p. It follows that PSGD attains the upper bounds in Theorem 2.3.5.

Strongly convex and `2 Lipschitz function family. We now consider a special subset

of the convex and `2 Lipschitz family described above, where the functions are strongly

3For certain range of p closer to 2 the
√

log d factor can be removed; for simplicity, we state the slightly
weaker result.
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convex. Recall that for γ > 0, a function f is γ-strongly convex on X if the following

function h is convex:

h(x) = f(x)− γ

2‖x‖
2
2, ∀x ∈ X . (2.7)

Definition 2.3.6 (Strongly convex and `2 Lipschitz function family Osc.). We denote by

Osc the set of all pairs of functions and oracles satisfying (2.4), (2.5), (2.7), and (2.6) for

q = 2.

The strong convexity parameter γ is related to the parameter B, the upper bound on

the `2 norm of the gradient estimate. We state a relation between them when the domain

X contains an `∞ ball of radius D centered at the origin; this property will be used when

we derive lower bounds.

Lemma 2.3.7. For any X ⊇ {x : ‖x‖∞ ≤ D}, we have B
γ
≥ Dd1/2

4 .

Theorem 2.3.8. Let X2(D) := {X ⊆ Rd : maxx,y∈X ‖x− y‖2 ≤ D}. There exist absolute

constants c0 and c1 where c1 ≥ c0 > 0 such that the following hold:

c1B
2

γT
≥ sup
X∈X2(D)

E∗(X ,Osc, T, I) ≥ c0B
2

γT

The lower bounds and the upper bounds can be found, for instance, in [5, Theorem 1] and

[70].

Remark 3. The optimal achievable scheme for strongly convex functions is the stochastic

gradient descent algorithm.

2.3.3 Information constraints

We describe three specific constraints of interest to us: local privacy, communication, and

computation. The first two are well-studied; the third is new and arises in procedures such

as random coordinate descent.
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Local differential privacy. To model local privacy, we define the ε-locally differentially

private (LDP) channel family Wpriv,ε.

Definition 2.3.9. A channel W : Rd → Rd is ε-locally differentially private (ε-LDP) if for

all x, x′ ∈ Rd,
W (Y ∈ S | X = x)
W (Y ∈ S | X = x′) ≤ eε

for all Borel measurable subsets S of Rd. We denote by Wpriv,ε the set of all ε-LDP

channels.

When operating under local privacy constraints, the oracle’s subgradient estimates are

passed through an ε-LDP channel, and only the output is available to the optimization

algorithm. Thus, the resulting process which handles the data of individual users, accessed

in each oracle query, is overall differentially private, a notion of privacy extensively studied

and widely used in practice.

Communication constraints. To model communication constraints, we define the

Wcom,r, the r-bit communication-constrained channel family, as follows.

Definition 2.3.10. A channel W : Rd → {0, 1}r constitutes an r-bit communication-

constrained channel. We denote by Wcom,r the set of all r-bit communication-constrained

channels.

Computational constraints. For high-dimensional optimization, altogether computing

the subgradient estimates can be computationally expensive. Often in such cases, one

resorts to computing only a few coordinates of the gradient estimates and using only them

for optimization ([73, 80]). This motivates the oblivious sampling channel family Wobl,

where the optimization algorithm gets to see only one randomly chosen coordinate of the

gradient estimate.

Definition 2.3.11. An oblivious sampling channel W is a channel W : Rd → Rd specified

by a probability vector (pi)i∈[d], i.e., a vector p such that pi ≥ 0 for all i and ∑i∈[d] pi = 1.

For an input g ∈ Rd, the output distribution of W is given by W (g(i)ei | g) = pi,∀i ∈ [d].

We denote by Wobl the set of all oblivious sampling channels.
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Therefore, at most one coordinate of the oracle’s the gradient estimate can be used by

the optimization algorithm. Further, this coordinate is sampled obliviously to the input

gradient estimate itself.

Remark 4. We note that the special case of pi = 1
d
∀ i ∈ [d] corresponds to sampling

employed by standard Random Coordinate Descent (RCD) (cf . [15, Section 6.4]), where

at each time step only one uniformly random coordinate of the gradient is used by the

gradient descent algorithm.

2.4 Main results: lower bounds for information-constrained

optimization

For p ∈ [1,∞] and D > 0, let Xp(D) := {X ⊆ Rd : maxx,y∈X ‖x − y‖p ≤ D} be the

collection of subsets of Rd whose `p diameter is at most D. In stating our results, we will

fix throughout the parameter B > 0, the almost sure bound on the gradient magnitude

defined in (2.6), as well as the strong convexity parameter γ > 0 defined in (2.7) (which,

implicitly, is required to satisfy Lemma 2.3.7). Throughout this section, our lower bounds

on minmax optimization error focus on tracking the convergence rate for large T , a

standard regime of interest for the stochastic optimization setting.

2.4.1 Lower bounds for locally private optimization under adap-

tive gradient processing

Throughout, we consider ε ∈ [0, 1], namely the high-privacy regime.

Convex function family. For the convex function family, we prove the following lower

bounds.

Theorem 2.4.1. Let p ∈ [1, 2], ε ∈ [0, 1], and D > 0. There exist absolute constants
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c0, c1 > 0 such that, for T ≥ c0
d
ε2
,

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wpriv,ε) ≥
c1DB√

T
·
√
d

ε2 .

(Moreover, one can take c0 := 1
2e(e−1)2 and c1 := 1

36(e−1)
√

2e .)

See Section 2.5.5 for the proof.

Theorem 2.4.2. Let p ∈ (2,∞], ε ∈ [0, 1], and D > 0. There exist absolute constants

c0, c1 > 0 such that, for T ≥ c0
d2

ε2
,

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wpriv,ε) ≥
c1DBd

1/2−1/p
√
T

·
√
d

ε2 .

(Moreover, one can take c0 and c1 as in Theorem 2.4.1.)

See Section 2.5.6 for the proof.

Remark 5 (Tightness of bounds for convex functions and LDP constraints). [24, Theorem

4 and 5] provide nonadaptive LDP algorithms which show that Theorem 2.4.1 is tight

up to logarithmic factors for p = 1 and Theorem 2.4.2 is tight up to constant factors for

all p ∈ (2,∞] (to the best of our knowledge, no non-trivial upper bound is known for

p ∈ (1, 2).). Therefore, adaptive processing of gradients under LDP cannot significantly

improve the convergence rate for convex function families.

Interestingly, for p = 1, [24] also provide a slightly stronger lower bound of c0DB√
T
·
√

d log d
ε2

for nonadaptive protocols, which matches the performance of their nonadaptive protocols

up to constant factors. This points to a minor gap in our understanding of adaptive

protocols: Can we establish a stronger lower bound for adaptive protocols to match the

performance of the nonadaptive algorithm of [24], or does there exist a better adaptive

protocol?

From Theorem 2.3.5, the standard optimization error for `p, p ∈ [1,∞], convex family

blows up by a factor of
√
d/ε2 when the gradient estimates are passed through an ε-LDP

channel.
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Strongly convex family. We prove the following result for strongly convex functions.

Theorem 2.4.3. Let ε ∈ [0, 1], and D > 0. There exist absolute constants c0, c1 > 0 such

that, for T ≥ c0 · B2

γ2D2 · dε2 ,

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥
c1B

2

γT
· d
ε2 .

See Section 2.5.7 for the proof.

Remark 6 (Tightness of bounds for strongly convex functions and LDP constraints). One

can use stochastic gradient descent with the nonadaptive protocol from [24, Appendix

C.2] to obtain a nonadaptive protocol with convergence rate matching the lower bound

in Theorem 2.4.3 up to constant factors, establishing that adaptivity does not help for

strongly convex functions.

From Theorem 2.3.8, the standard optimization error for strongly convex functions

blows up by a factor of d
ε2

when the gradient estimates are passed through an ε-LDP

channel.

2.4.2 Lower bounds on communication-constrained optimization

Convex function family. For convex functions, we prove the following lower bounds.

Theorem 2.4.4. Let p ∈ [1, 2], and D > 0. There exists an absolute constant c0 > 0 such

that, for r ∈ N, and T ≥ d
6r ,

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wcom,r) ≥
c0DB√

T
·
√

d

d ∧ r
.

(Moreover, one can take c0 := 1
12
√

58 .)

See Section 2.5.7 for the proof.

Theorem 2.4.5. Let p ∈ (2,∞], and D > 0. There exists an absolute constant c0 > 0
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such that, for r ∈ N, and T ≥ 1
4 ·

d2

2r∧d , we have

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wcom,r) ≥
c0DBd

1/2−1/p
√
T

·
√

d

d ∧ 2r

 ∨
c0DB√

T
·
√

d

d ∧ r


(Moreover, one can take c0 := 1

12
√

58 .)

See Section 2.5.6 for the proof.

In Chapters 3 and 4, we will derive upper bounds for most regimes of p and r. Specifically,

restricting r ≥ r∗(T, p) our bounds are tight for all regimes of p. Moreover, for p = 1 and

[2,∞], our bounds are nearly tight for all r.

From Theorem 2.3.5, the standard optimization errors for `1 and `p, p ∈ (2,∞], convex

family blow up by a factor of
√

d
d∧r and

√
d

d∧2r ∨
√

d2/p

d∧r , respectively, when the gradient

estimates are compressed to r bits.

Strongly convex family. We prove the following result for strongly convex functions.

Theorem 2.4.6. Let D > 0. There exist absolute constants c0, c1 > 0 such that, for r ∈ N

and T ≥ c0 · B2

γ2D2 · dr ,

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
c1B

2

γT
· d

d ∧ r
.

See Section 2.5.7 for the proof.

In Chapters 3, we will derive upper bounds which are tight upto a factor of log log∗ d

for all r. From Remark 3, the standard optimization error for strongly convex functions

blows up by a factor of d
r
when the gradient estimates are compressed to r bits.

2.4.3 Lower bounds on computationally-constrained optimiza-

tion

We restrict to the case of Euclidean geometry (p = 2) for the oblivious sampling channel

family Wobl. Our motivation for introducing this class was to study the optimality of

standard RCD, which is proposed to work in the Euclidean setting alone. Furthermore,



Chapter 2. Lower Bounds for Information-Constrained Optimization 26

if we consider a slightly larger family of channels where the sampling probabilities can

depend on the input itself, the resulting family will be similar to the 1-bit communication

family, which we have addressed in Section 2.4.2.

Convex family. For convex functions, we establish the following lower bound, for p = 2.

Theorem 2.4.7. Let D > 0. There exists an absolute constant c0 > 0 such that, for

T ≥ d
4 , we have

sup
X∈X2(D)

E∗(X ,Oc,2, T,Wobl) ≥ c0
√
dDB√
T

.

(Moreover, one can take c0 := 1
72 .)

See Section 2.5.5 for a proof.

The standard Random Coordinate Descent (RCD) (see for instance [15, Theorem

6.6]), which employs uniform sampling, matches this lower bound up to constant factors.

The optimality of standard RCD motivates further the folklore approach of uniformly

sampling coordinates for random coordinate descent unless there is an obvious structure

to exploit (as in [72]). This establishes that adaptive sampling strategies do not improve

over nonadaptive sampling strategies for the family Wobl. Also from Theorem 2.3.5, the

standard optimization error for `2 convex family blows up by a factor of
√
d when the

gradient coordinates are sampled obliviously.

Strongly convex family. For strongly convex functions, we obtain the following lower

bound, for p = 2.

Theorem 2.4.8. Let D > 0. There exist absolute constants c0, c1 > 0 such that, for

T ≥ c0 · d B2

γ2D2 , we have

sup
X∈X2(D)

E∗(X ,Osc, T,Wobl) ≥ c1dB
2

γT
.

See Section 2.5.7 for the proof.

Once again, the standard RCD algorithm matches this lower bound, which shows that

adaptive sampling strategies do not improve over nonadaptive sampling strategies for
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LDP Communication Computational

constraints -constraints -constraints

Convex and `p (Only for p = 2)

Lipschitz function c1DB√
T
·
√
d

ε2
c1DB√

T
·
√

d

d ∧ r
c1DB√

T
·
√
d

family (p ∈ [1, 2]) (Theorem 2.4.1) (Theorem 2.4.4) (Theorem 2.4.7)

Convex and `p
(
c0DBd1/2−1/p

√
T

·
√

d
d∧2r

)
Lipschitz function c1DBd

1/2−1/p
√
T

·
√
d

ε2 ∨
(
c0DB√

T
·
√

d
d∧r

)
N.A.

family (p ∈ (2,∞]) (Theorem 2.4.2) (Theorem 2.4.5)

Strongly convex and `2

Lipschitz function c1B
2

γT
· d
ε2

c1B
2

γT
· d
r

c1dB
2

γT

family (Theorem 2.4.3) (Theorem 2.4.6) (Theorem 2.4.8)

Table 2.2: Summary of all our lower bounds on gap-to-optimality for information-

constrained optimization.

strongly convex optimization. Further, from Theorem 2.3.8, the standard optimization

error for strongly convex family blows up by a factor of d when the gradient coordinates

are sampled obliviously.

A summary of all our lower bounds is provided in Table 2.2.

2.5 Proofs of lower bounds

2.5.1 Outline of the proof for our lower bounds

The proofs of our lower bounds for adaptive protocols follow the same general template,

summarized below.

Step 1. Relating optimality gap to average information: We consider a family

of functions G = {gv : v ∈ {−1, 1}d} satisfying suitable conditions and associate with it a
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“discrepancy metric” ψ(G) that allows us to relate the optimality gap of any algorithm

to an average mutual information quantity. Specifically, for V distributed uniformly over

{−1, 1}d, we show that the output x̂ of any optimization algorithm satisfies

E
[
gV (x̂)−min

x∈X
gV (x)

]
≥ dψ(G)

6

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )
 ,

where Yt is the channel output for the gradient in the tth iteration and Y T := (Y1, . . . , YT ).

Heuristically, we have related the gap to optimality to the difficulty of inferring V

by observing Y T . We note that the bound above is similar to that of [5], but instead of

mutual information I
(
V ∧ Y T

)
we get the average mutual information per coordinate.

This latter quantity is amenable to analysis for adaptive protocols.

Step 2. Average information bounds: To bound the average mutual information

per coordinate, 1
d

∑d
i=1 I

(
V (i) ∧ Y T

)
, we take recourse to the recently proposed bounds

from [3]. These bounds hold for Y T which is the output of adaptively selected channels

from a fixed channel family W, with i.i.d. input XT = (X1, . . . , XT ) generated from a

family of distributions {pv, v ∈ {−1, 1}d}. We view the output of oracle as inputs XT and

derive the required bound.

While results in [3] provided bounds for Wpriv,ε and Wcomm,r, we extend the approach

to handle Wobl. Specifically, under a smoothness and symmetry condition on {pv, v ∈

{−1, 1}d}, which has a parameter γ associated with it, we show the following:

For |X | <∞ and Xi := {x(i) : x ∈ X}, i ∈ [d], we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ C

2 · Tγ
2,

where the constant C depends only on {pv, v ∈ {−1,+1}d} and, denoting by v⊕i ∈ {−1, 1}d

the vector with the sign of the ith coordinate of v flipped, is given by

C = (max
i∈[d]
|Xi| − 1) ·max

x∈X
max

v∈{−1,+1}d
max
i∈[d]

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) .

Step 3. Use appropriate difficult instances On the one hand, to prove lower
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bounds for the convex family we will use the class of functions Gc = {gv(x) : v ∈ {−1, 1}d}

defined on the domain X = {x ∈ Rd : ‖x‖∞ ≤ b} comprising functions gv given below:

gv(x) = a ·
d∑
i=1
|x(i)− v(i) · b|, ∀x ∈ X , v ∈ {−1, 1}d.

On the other hand, to prove lower bounds for the strongly convex family, we will use the

class of functions Gsc = {gv(x) : v ∈ {−1, 1}d} on X = {x ∈ Rd : ‖x‖∞ ≤ b} given by

gv(x) = a
d∑
i=1

(
1 + 2δv(i)

2 f+
i (x) + 1− 2δv(i)

2 f−i (x)
)
, ∀x ∈ X , v ∈ {−1, 1}d,

where f+
i and f−i , for i ∈ [d], are given by

f+
i (x) = θb|x(i) + b|+ 1− θ

4 (x(i) + b)2, f−i (x) = θb|x(i)− b|+ 1− θ
4 (x(i)− b)2.

Step 4. Carefully combine everything: We obtain our desired bounds by applying

Steps 1 and 2 to difficult instances from Step 3. Since the difficult instance for convex

family consists of linear functions, the gradient does not depend on x. Thus, we can

design oracles which give i.i.d. output with distribution independent of the query point xt,

whereby the bound in Step 2 can be applied. Interestingly, we construct different oracles

for p < 2 and p ≥ 2.

However, the situation is different for the strongly convex family. The gradients now

depend on the query point xt, whereby it is unclear if we can comply with the requirements

in Step 2. Interestingly, for communication and local privacy constraints, we construct

oracles that allow us to view messages Y T as the output of adaptively selected channels

applied to independent samples from a common distribution pv. While it is unclear if the

same can be done for computational constraints as well, we use an alternative approach

and exhibit an oracle for which we can find an intermediate message vector Z1, . . . , ZT

such that (i) V and Y T are conditionally independent given ZT and (ii) the message ZT

satisfies the requirements of Step 2.
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2.5.2 Relating optimality gap to average information

In this section, we prove a general lower bound for the expected gap to optimality by

considering a parameterized family of functions and oracles which is contained in our

oracle family of interest. We present a bound that relates the expected gap to optimality

to the average mutual information between the channel output and different coordinates

of the unknown parameter. This step is the key difference between our approach and

that of [5], which used Fano’s method instead of our bound below. We remark that the

bounds resulting from Fano’s method are typically not amenable to analysis for adaptive

protocols.

In more detail, our result can be used to prove bounds for the average optimization

error over any class of functions which satisfies the two conditions below.

Assumptions 2.5.1. Let X ⊆ Rd and V = {−1, 1}d. Let G = {gv : v ∈ V} where

gv : X → R are real-valued functions from X such that

1. the gvs are coordinate-wise decomposable, i.e., there exist functions gi,b : R → R,

i ∈ [d], b ∈ {−1, 1}, such that

gv(x) =
d∑
i=1

gi,v(i)(x(i)).

2. the minimum of gv is also a coordinate-wise minimum, i.e., if we denote by x∗v the

minimum of gv over X , then, for all i ∈ [d], we have

x∗v(i) = argmin
y∈Xi

gi,v(i)(y),

where Xi = {x(i) : x ∈ X}.

For G satisfying Assumptions 2.5.1 and for i ∈ [d], we now define the following

discrepancy metric:

ψi(G) := min
y∈Xi

(
gi,1(y) + gi,−1(y)−

(
min
y′∈Xi

gi,1(y′) + min
y′∈Xi

gi,−1(y′)
))

(2.8)
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ψ(G) := min
i∈[d]

ψi(G). (2.9)

This is a “coordinate-wise counterpart” of the metric used in [5]. The next lemma follows

readily from this definition.

Lemma 2.5.2. Fix i ∈ [d]. For every y ∈ Xi, there can be at most one b ∈ {−1, 1} such

that

gi,b(y)− min
y′∈Xi

gi,b(y′) ≤
ψi(G)

3 .

Proof. Let b ∈ {−1, 1}. By definition of ψi(G), for all y ∈ Xi we have

(
gi,b(y)− min

y′∈Xi
gi,b(y′)

)
+
(
gi,−b(y)− min

y′∈Xi
gi,−b(y′)

)
≥ ψi(G).

For y such that gi,b(y)−miny′∈Xi gi,b(y′) ≤
ψi(G)

3 , we now must have that

gi,−b(y)− min
y′∈Xi

gi,−b(y′) ≥
2ψi(G)

3 .

We will use this observation to bound the expected gap to optimality for any algorithm

π optimizing an unknown function in G that has access to only the corresponding first-order

oracle.

Lemma 2.5.3. Suppose G = {gv : v ∈ {−1, 1}d} satisfies Assumption 2.5.1. Let π be

any optimization algorithm that adaptively selects the channels {Wj}j∈[T ]. For a random

variable V distributed uniformly over {−1, 1}d, the output x̂ of π when it is applied to a

function from G and any associated (stochastic subgradient) oracle satisfies

E [gV (x̂)− gV (x∗V )] ≥ dψ(G)
6

1−

√√√√1
d

d∑
i=1

2I(V (i) ∧ Y T )
 ,

where ψ(G) = minj∈[d] ψj(G), Yt is the channel output for the gradient at time step t and

Y T := (Y1, . . . , YT ).

Proof. Our proof is based on relating the gap to optimality to the error in estimation of

V upon observing Y T . Suppose the algorithm π along with channels {Wj}j∈[T ] outputs
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the point x̂ after T iterations. By linearity of expectation, the decomposability of gv, and

Markov’s inequality, we have

E [gV (x̂)− gV (x∗V )] =
d∑
i=1

E
[
gi,V (i)(x̂(i))− gi,V (i)(x∗V (i))

]

≥
d∑
i=1

ψi(G)
3 Pr

(
gi,V (i)(x̂(i))− gi,V (i)(x∗V (i)) ≥ ψi(G)

3

)

≥ ψ(G)
3

d∑
i=1

Pr
(
gi,V (i)(x̂(i))− gi,V (i)(x∗V (i)) ≥ ψi(G)

3

)
. (2.10)

We proceed to bound each summand separately.

Fix any i ∈ [d] and consider the following estimate for V (i): Given x̂, we output a

V̂ (i) ∈ {−1, 1} satisfying

gi,V̂ (i)(x̂(i))− min
y′∈Xi

gi,V̂ (i)(y′) <
ψi(G)

3 ;

if no such V̂ (i) exists, we generate V̂ (i) uniformly from {−1, 1}. Then, as a consequence

of Lemma 2.5.2, we get

Pr
(
V̂ (i) 6= v(i)

)
≤ Pr

(
gi,v(i)(x̂(i))− gi,v(i)(x∗v(i)) ≥

ψi(G)
3

)
. (2.11)

Next, denote by pY T the distribution of Y T and by pY T+i and pY T−i , respectively, the

distributions of Y T given V (i) = +1 and V (i) = −1. It is easy to verify that

pY T = 1
2(pY T+i + pY T−i ), ∀ i ∈ [d].

Noting that V (i) is uniform and the estimate V̂ (i) is formed as a function of Y T , we get

Pr
(
V̂ (i) 6= v(i)

)
≥ 1

2 −
1
2dTV

(
pY T+i ,pY

T

−i

)
. (2.12)
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From this, combining (2.11) and (2.12) and plugging the result into (2.10), we have

E [gv(x̂)− gv(x∗v)] ≥
ψ(G)

6

d∑
i=1

[
1− dTV

(
pY T+i ,pY

T

−i

)]

≥ ψ(G)
6

d∑
i=1

[
1− dTV

(
pY T+i ,pY

T
)
− dTV

(
pY T−i ,pY

T
)]

≥ ψ(G)
6

d∑
i=1

1−
√

1
2D

(
pY T+i ‖pY

T
)
−
√

1
2D

(
pY T−i ‖pY

T
)
|


≥ dψ(G)

6

1−

√√√√1
d

d∑
i=1

D
(
pY T+i ‖pY

T
)

+ D
(
pY T−i ‖pY

T
)

= dψ(G)
6

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )
 ,

where the second inequality follows from the triangle inequality, the third is Pinsker’s

inequality, and the fourth is Jensen’s inequality.

2.5.3 Average information bounds

The next step in our proof is to bound the average mutual information that emerged in

Section 2.5.2. A general recipe for bounding this average mutual information has been

given recently in [3], which we recall below.

Let {pv, v ∈ {−1, 1}d} be a family of distributions over some domain X and W be a

fixed channel family. For v ∈ {−1, 1}d and i ∈ [d], denote by v⊕i the element of {−1, 1}d

obtained by flipping the ith coordinate of v. For a fixed v, we obtain T independent

samples X1, . . . , XT from pv. Let Y1, . . . , YT be the output of channels selected from the

channel family W by an adaptive channel selection strategy (see Section 2.3.1) when input

to the channel at time t is Xt, 1 ≤ t ≤ T .4

For V distributed uniformly on {−1, 1}d, we are interested in bounding (1/d)∑d
i=1 I

(
V (i) ∧ Y T

)
.

In [3], different bounds were given for this quantity under different assumptions. We state

these assumptions below.

4The bound in [3] allows even shared randomness U in its definition of interactive protocols. We have
omitted U in the description for simplicity.



Chapter 2. Lower Bounds for Information-Constrained Optimization 34

Assumptions 2.5.4. For every v ∈ {−1, 1}d and i ∈ [d], there exists φv,i : X → R such

that Epv

[
φ2
v,i

]
= 1, Epv [φv,iφv,j] = 1{i=j} holds for all i, j ∈ [d], and

dpv⊕i
dpv

= 1 + γφv,i,

where γ ∈ R is a fixed constant independent of v, i.

Assumptions 2.5.5. There exists some κW ≥ 1 such that

max
v∈{−1,1}d

max
y∈Y

sup
W∈W

Epv⊕i [W (y | X)]
Epv [W (y | X)] ≤ κW .

Assumptions 2.5.6. There exists some σ ≥ 0 such that, for all v ∈ {−1, 1}d, the vector

φv(X) := (φv,i(X))i∈[d] ∈ Rd is σ2-subgaussian for X ∼ pv.5 Further, for any fixed z, the

random variables φv,i(X) are independent across i ∈ [d].

We then have the following bound local privacy constraints.

Theorem 2.5.7 ([3, Corollary 6]). Consider {pv, v ∈ {−1, 1}d} satisfying Assump-

tion 2.5.4 and the channel family W = Wpriv,ε. Let V be distributed uniformly over

{−1, 1}d and Y T be the output of channels selected by the optimization algorithm as above.

Then, we have
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ T · γ

2

2 · e
ε(eε − 1)2.

For the case of communication constraints, we have the analogous statement below:

Theorem 2.5.8 ([3, Corollary 6]). Consider {pv, v ∈ {−1, 1}d} satisfying Assump-

tions 2.5.4 and 2.5.5 and the channel family W =Wcom,r. Let V be distributed uniformly

over {−1, 1}d and Y T be the output of channels selected by the optimization algorithm as

above. Then, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 1

2κWcom,r · Tγ2(2r ∧ d).

5Recall that a random variable Y is σ2-subgaussian if E [Y ] = 0 and E
[
eλY

]
≤ eσ2λ2/2 for all λ ∈ R;

and that a vector-valued random variable Y is σ2-subgaussian if its projection 〈Y, u〉 is σ2-subgaussian for
every unit vector u.
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Moreover, if Assumption 2.5.6 holds as well, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ (ln 2)κWcom,r σ

2 · Tγ2r.

Finally, we derive a bound for the oblivious sampling channel family.

Theorem 2.5.9. Consider {pv, v ∈ {−1, 1}d} satisfying Assumption 2.5.4 and the channel

family W =Wobl. Let V be distributed uniformly over {−1, 1}d and Y T be the output of

channels selected by the optimization algorithm as above. Further, assume that |X | <∞.

Then, we have
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ C

2 · Tγ
2,

where the constant C depends only on {pv, v ∈ {−1,+1}d} and, denoting Xi := {x(i) :

x ∈ X}, is given by

C = (max
i∈[d]
|Xi| − 1) ·max

x∈X
max

v∈{−1,+1}d
max
i∈[d]

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) .

Proof. We recall another result from [3, Theorem 5]: Under Assumptions 2.5.4 and 2.5.5,

we have6

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 1

2κWobl · Tγ2 max
v∈{−1,1}d

max
W∈Wobl

∑
y∈Y

Varpv [W (y | X)]
Epv [W (y | X)] .

We now evaluate various parameters involved in this bound. LetW be a oblivious sampling

channel specified by the probability vector (pi)i∈[d]. Note that a channel W ∈ Wobl can be

equivalently viewed as having output alphabet Y = {(i, z) : z ∈ Xi, i ∈ [d]}. Recall that

for an input x, the channel output is x(i) with probability pi, i ∈ [d], i.e., for y = (i, z),

W (y | x) = pi1{x(i)=z}. Thus, we have

∑
y∈Y

Varpv [W (y | X)]
Epv [W (y | X)] =

d∑
i=1

∑
z∈Xi

p2
i Pr(X(i) = z)− p2

i Pr(X(i) = z)2

pi Pr(X(i) = z)

6This is the general bound underlying Theorem 2.5.7.
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=
d∑
i=1

pi(|Xi| − 1)

≤ max
i∈[d]
|Xi| − 1.

Furthermore, proceeding similarly, we get that Assumption 2.5.5 holds as well with

κWobl = max
x∈X

max
v∈{−1,+1}d

max
i∈[d]

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) .

The proof is completed by combining the bounds above.

2.5.4 The difficult instances for our lower bounds

With our general tools ready, we now describe the precise constructions of function families

we use to get our lower bounds. We first provide the details of a family Gc(a, b) of convex

functions, before turning to Gsc(a, b, δ, θ), our family of hard instances for the strongly

convex setting. In both cases, our families of hard instances are parameterized (by a, b

and a, b, δ, θ, respectively), and setting those parameters carefully will enable us to prove

our various results.

Difficult functions for the convex family. To prove lower bounds for the convex

family, we will use the class of functions Gc(a, b) below, parameterized by a, b > 0 and

defined on the domain X as follows:

X = {x ∈ Rd : ‖x‖∞ ≤ b},

gv(x) = a ·
d∑
i=1
|x(i)− v(i) · b|, ∀x ∈ X , v ∈ {−1, 1}d, and

Gc = {gv(x) : v ∈ {−1, 1}d}. (2.13)

Observe that the class Gc satisfies the conditions in Assumption 2.5.1 with gi,1(x) =

a|x(i)− b| and gi,−1(x) = a|x(i) + b| and Xi = [−b, b] for all i ∈ [d]. Further, we can bound

the discreprency metric for this class as follows.
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Lemma 2.5.10. For the class of functions Gc defined in (2.13), we have ψ(Gc) ≥ 2ab.

Proof. Note that minx∈[−b,b] gi,1(x) = minx∈[−b,b] gi,−1(x) = 0. Therefore, for all i ∈ [d],

ψi(Gc) = min
x∈[−b,b]

(a|x(i)− b|+ a|x(i) + b|) ≥ 2ab,

where the inequality follows from the triangle inequality.

Difficult functions for the strongly convex family. To prove lower bounds for the

strongly convex family, we will use the class of functions Gsc(a, b, δ, θ), parameterized by

a, b > 0, δ > 0, and θ ∈ [0, 1], and defined on the domain X as follows:

X = {x ∈ Rd : ‖x‖∞ ≤ b},

gv(x) = a
d∑
i=1

(
1 + 2δv(i)

2 f+
i (x) + 1− 2δv(i)

2 f−i (x)
)
, ∀x ∈ X , v ∈ {−1, 1}d, and

Gsc = {gv(x) : v ∈ {−1, 1}d}, (2.14)

where f+
i and f−i , for i ∈ [d], are given by

f+
i (x) = θb|x(i) + b|+ 1− θ

4 (x(i) + b)2, (2.15)

f−i (x) = θb|x(i)− b|+ 1− θ
4 (x(i)− b)2, (2.16)

for all x ∈ X . We can check that, for every v ∈ {−1, 1}d, the function gv is then γ-strongly

convex for γ := a · 1−θ
4 . Moreover, we have the following bound for the discrepancy metric.

Lemma 2.5.11. For the class of functions Gsc defined in (2.14), if 1−θ
1+θ ≥ 2δ then ψ(Gsc) ≥

2ab2δ2

1−θ .

Proof. This follows from similar calculations as in [5, Appendix A]; we provide the proof

here for completeness. Fixing any v ∈ {−1, 1}d, we first note that by definition of Gsc,

the function gv can be indeed be decomposed as gv(x) = ∑d
i=1 gi,v(i)(xi) for x ∈ X (i.e.,
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‖x‖∞ ≤ b), where, for i ∈ [d], ν ∈ {−1, 1} and y ∈ Xi := [−b, b],

gi,ν(y) = a

(
1 + 2δν

2

(
θb|y + b|+ 1− θ

4 (y + b)2
)

+ 1− 2δν
2

(
θb|y − b|+ 1− θ

4 (y − b)2
))

= a

(
1− θ

4 y2 + 1 + 3θ
4 b2 + δν(1 + θ)by

)

where the second line relies on the fact that |y + b| = y + b and |y − b| = b− y for |y| ≤ b.

One can easily see, e.g., by differentiation, that gi,ν is minimized at y∗ := −2δν 1+θ
1−θb which

does satisfy |y∗| ≤ b given our assumption 1−θ
1+θ ≥ 2δ. It follows that miny∈Xi gi,1(y) =

miny∈Xi gi,−1(y) = ab2
(

1+3θ
4 − δ2 (1+θ)2

1−θ

)
. Similarly, we have, for y ∈ Xi,

gi,1(y) + gi,−1(y) = a

(
1− θ

2 y2 + 1 + 3θ
2 b2

)

which is minimized at y∗ = 0, where it takes value ab2 1+3θ
2 . Putting it together,

ψi(Gsc) = min
y∈Xi

(gi,1(y) + gi,−1(y))− (min
y∈Xi

gi,1(y) + min
y∈Xi

gi,−1(y)) = 2ab2δ2 (1 + θ)2

1− θ .

Finally, ψ(Gsc) = mini∈[d] ψi(Gsc) = 2ab2δ2 (1+θ)2

1−θ ≥
2ab2δ2

1−θ , as claimed.

2.5.5 Convex Lipschitz functions for p ∈ [1, 2]: Proof of Theo-

rems 2.4.1, 2.4.4, and 2.4.7

We first prove Theorems 2.4.1 and 2.4.4, our lower bounds on optimization of convex

functions for p ∈ [1, 2] under privacy and communication constraints, respectively. We

consider the class of functions Gc defined in (2.13) with parameters a := 2Bδ/d1/q and

b := D/(2d1/p). That is, X = {x ∈ Rd : ‖x‖∞ ≤ D/(2d1/p)} and

gv(x) := 2Bδ
d1/q

d∑
i=1

∣∣∣∣∣x(i)− v(i)D
2d1/p

∣∣∣∣∣ x ∈ X , v ∈ {−1, 1}d. (2.17)

Note that the gradient of gv is equal to −2Bδv/d1/q at every x ∈ X .

For each gv, consider the corresponding gradient oracle Ov which outputs independent
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values for each coordinate, with the ith coordinate taking values −B/d1/q and B/d1/q with

probabilities (1 + 2δv(i))/2 and (1− 2δv(i))/2, respectively, for some parameter δ > 0 to

be suitably chosen later.

Clearly, X ∈ Xp(D) and all the functions gv and the corresponding oracles Ov belong

to the convex function family Oc,p. We begin by noting that for V distributed uniformly

over {−1, 1}d, we have

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wpriv,ε) ≥ E [gV (xT )− gV (x∗V )] ,

where the expectation is over v as well as the randomness in xT .

From Lemma 2.5.3 and 2.5.10, we have

E [gV (xT )− gV (x∗V )] ≥ d · ab
3 ·

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )
 , (2.18)

where Y T = (Y1, ..., YT ) are the channel outputs for the gradient estimates supplied by the

oracle for the T queries.

Next, we apply the average information bound from Section 2.5.3. To do so, observe

that by the definition of our oracle, the oracle output at each time step is an independent

draw from the product distribution pv on Ω :=
{
− B
d1/q ,

B
d1/q

}d
(in particular, pv is the

same at each time step, as it does not depend on the query xt at time step t to the oracle).

We treat the output of the independent outputs of the oracle as i.i.d. samples X1, ..., XT

in Section 2.5.3 and the corresponding channel outputs as Y T . We can check that, for

every i ∈ [d], we have
pv⊕i(x)
pv(x) = 1 + 2δv(i) sign(x(i))

1− 2δv(i) sign(x(i)) (2.19)

for all x ∈ Ω, and that Assumption 2.5.4 is satisfied with

γ := 4δ√
1− 4δ2

, φi,v(x) := v(i) sign(x(i)) + 2δ√
1− 4δ2

. (2.20)
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Furthermore, noting that Assumption 2.5.5 always holds with

κW = max
v∈{−1,1}d

max
x∈Ω

max
i∈[d]

pv⊕i(x)
pv(x) ,

it is satisfied with κW = 2 (regardless of W), as long as δ ≤ 1/6, since the right-side above

is bounded by 2 for such a δ. Finally, Assumption 2.5.6, is also satisfied as (φi,v(X))i∈[d]

for X ∼ pv is σ2-subgaussian for σ2 := 1
1−4δ2 .

Completing the proof of Theorem 2.4.1 (LDP constraints). From Theorem 2.5.7

and the bounds derived above, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ T · 8δ2

1− 4δ2 · e
ε(eε − 1)2,

and therefore,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ c · Tδ2ε2,

where c := 9e(e− 1)2 (recalling that ε ∈ (0, 1] and δ ≤ 1/6). Substituting this bound on

the average mutual information in (2.18) along with the values of a and b, we have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3 ·

1−
√

2cTδ2ε2

d

 .

Upon setting δ :=
√

d
8cTε2 , we get

E [gV (xT )− gV (x∗V )] ≥ 1
12
√

2c
· DB√

T
·
√
d

ε2 ,

where we require T ≥ 9
2c ·

d
ε2

in order to enforce δ ≤ 1/6.

Completing the proof of Theorem 2.4.4 (Communication constraints). From

Theorem 2.5.8 and γ, σ, and κW set as discussed above, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 32(ln 2)

(1− 4δ2)2 · Tδ
2r,
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whereby, using δ ≤ 1/6,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 29Tδ2r.

Substituting this bound on mutual information in (2.18) along with the values of a and b,

we have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3 ·
[
1− 1√

d
·
√

58Tδ2r

]
.

Setting δ :=
√

d
232rT , we finally get

E [gV (xT )− gV (x∗V )] ≥ 1
12
√

58
· DB√

T
·
√
d

r
,

where we require T ≥ 9
58 ·

d
r
in order to enforce δ ≤ 1/6.

Remark 7. Finally, we remark that the lower bound as in Theorem 2.4.4 also holds when

the communication constraint of r bits is satisfied in expectation and not in the strict

worst-case sense. The modification to the proof above is minimal. The only change is that

the mutual information term is now bounded by using a strong data processing inequality

from [25]. This bound holds for variable-length quantizers that satisfy the communication

constraints in expectation, as opposed to the current bound from [3], which only holds for

fixed-length quantizers. Specifically, from [25, Proposition 2], we have that

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cTδ2r,

when the communication channel restricts the length of the outputs Yt to r bits in

expectation. A caveat here is that the strong data processing inequality from [25] holds

only for nonadaptive channel selection strategies. Thus we have the same lower bound

on optimization error of family Oc,p, p ∈ [1, 2], as in Theorem 2.4.4 even when the

communication constraints are satisfied in expectation as long as the gradient processing

is done in a nonadaptive manner.
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Completing the proof of Theorem 2.4.7 (Computational constraints). Note

that the sets Xis in Theorem 2.5.9 have |Xi| = 2 for our oracle. Further,

pv⊕i(X(i) = x(i))
pv(X(i) = x(i)) = pv⊕i(x)

pv(x) = 1 + 2δv(i) sign(x(i))
1− 2δv(i) sign(x(i)) ≤ 2,

when δ ≤ 1/6. Thus, the constant C in Theorem 2.5.9 is less than 2, whereby

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 16δ2

1− 4δ2 · T,

whereby, using δ ≤ 1/6,
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 18Tδ2.

Substituting this bound on mutual information in (2.18) along with the values of a and b,

we have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3 ·
[
1− 1√

d
·
√

36Tδ2

]
.

Setting δ :=
√

d
144T , we finally get

E [gV (xT )− gV (x∗V )] ≥ 1
72 ·

DB
√
d√

T
,

where we require T ≥ d
4 in order to enforce δ ≤ 1/6.

2.5.6 Convex Lipschitz functions for p ∈ (2,∞]: Proof of Theo-

rems 2.4.2 and 2.4.5

Next, we establish Theorems 2.4.2 and 2.4.5, the analogous lower bounds on optimization

of convex functions when p ∈ [2,∞). We again consider the class of functions Gc defined

in (2.13), this time with parameters a := 2Bδ/d and b := D/(2d1/p) That is, here

X = {x : ‖x‖∞ ≤ D/(2d1/p)} and

gv(x) := 2Bδ
d

d∑
i=1

∣∣∣∣∣x(i)− v(i)D
2d1/p

∣∣∣∣∣ . ∀x ∈ X , v ∈ {−1, 1}d.



Chapter 2. Lower Bounds for Information-Constrained Optimization 43

It follows that the gradient of gv is equal to −2Bδv/d at every x ∈ X .

For each gv, consider then the gradient oracle Ov which outputs 0 in all but a randomly

chosen coordinate; if that coordinate is i, it takes values −B and B with probabilities
1+2δv(i))

2d and 1−2δv(i)
2d , respectively, for some parameter δ ∈ (0, 1/6] to be suitably chosen

later. Thus, the oracle is no longer a product distribution.

Clearly, X ∈ Xp(D) and all the functions gv and the corresponding oracles Ov belong

to the convex function family Oc,p. Proceeding as in Section 2.5.5, we get for a uniformly

distributed V that

E [gV (xT )− gV (x∗V )] ≥ DBδ

3d1/p ·

1−

√√√√1
d

d∑
i=1

2I(V (i) ∧ Y T )
 . (2.21)

Further, proceeding as in the previous section to bound the average information, we note

that the oracle outputs independent samples from the distribution pv on Ω := {−B, 0, B}d

at each time. It can be checked easily that, for every i ∈ [d], the expression of the ratio
pv⊕i
pv

given in (2.19) still holds (as only the denominators of the Bernoulli parameters have

changed, and they cancel out in the ratio), and that Assumption 2.5.4 is satisfied with the

following γ, φi,vs:

γ := 1√
d
· 4δ√

1− 4δ2
, φi,v(x) :=

√
d · v(i) sign(x(i)) + 2δ√

1− 4δ2
. (2.22)

Observe the difference with the expressions from the previous section (specifically, (2.20)),

as the orthonormality assumption now crucially introduces a factor 1/
√
d in the value of γ.

Finally, because we will enforce δ ≤ 1/6 we also can take κWcom,r = 2 for the communication

constraints, as before. We remark that φi,v(X) is no longer subgaussian.

Completing the proof of Theorem 2.4.2 (LDP constraints). From Theorem 2.5.7

and the value of γ above, we get, analogously to the previous section,

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ c · Tδ

2ε2

d
,
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where c := 9e(e− 1)2 (recalling that ε ∈ (0, 1] and δ ≤ 1/6). Substituting this bound on

mutual information in (2.21), we obtain

E [gV (xT )− gV (x∗V )] ≥ DBδ

3d1/p

1−
√

2cTδ2ε2

d2

 .

Optimizing over δ, we set δ :=
√

d2

8cTε2 and get

E [gV (xT )− gV (x∗V )] ≥ 1
12
√

2c
· DBd

1/2−1/p
√
T

·
√
d

ε2 ,

where we require T ≥ 9
2c ·

d2

ε2
in order to guarantee δ ≤ 1/6. This concludes the proof.

Completing the proof of Theorem 2.4.5 (Communication constraints). We

prove the two parts of the lower bounds separately, starting with the first. From Theo-

rem 2.5.8 and the setting of γ and κW as above, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 16

1− 4δ2 · Tδ
2 2r ∧ d

d
,

whereby, using δ ≤ 1/6,

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ 18Tδ2 2r ∧ d

d
.

Substituting this bound on mutual information in (2.21), we have

E [gV (xT )− gV (x∗V )] ≥ DBδ

3d1/p ·

1− 1√
d
·
√

36Tδ2 2r ∧ d
d

 .
Setting δ :=

√
d2

144(2r∧d)T , we finally get

E [gV (xT )− gV (x∗V )] ≥ 1
72 ·

DBd1/2−1/p
√
T

·
√

d

2r ∧ d,

where we require T ≥ 1
4 ·

d2

2r∧d in order to guarantee δ ≤ 1/6.
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The second bound follows by noting that the lower bound in Theorem 2.4.4 is still

valid. Finally, since d2

2r∧d ≥
d
r
for all 1 ≤ r ≤ d, both bounds apply whenever T = Ω

(
d2

2r∧d

)
,

as claimed.

2.5.7 Strongly convex functions: Proof of Theorem 2.4.3, 2.4.6,

and 2.4.8

Next, we establish our lower bounds on strongly convex optimization. We consider the

class of functions Gsc defined in (2.14) with parameters a := B/(
√
db) and b := D/(2

√
d).

That is, X = {x : ‖x‖∞ ≤ D/(2
√
d)}, and, for every x ∈ X and v ∈ {−1, 1}d,

gv(x) := B

b ·
√
d

d∑
i=1

1 + 2δv(i)
2 f+

i (x) + 1− 2δv(i)
2 f−i (x),

and

f+
i (x) = θb|x(i) + b|+ 1− θ

4 (x(i) + b)2 and f−i (x) = θb|x(i)− b|+ 1− θ
4 (x(i)− b)2.

Moreover, in order to ensure that the every gv is γ-strongly convex, we choose θ := 1− 4γ
a

(so that a1−θ
4 = γ). It remains to specify δ, which we will choose such that 0 < δ ≤ 1

2 ·
1−θ
1+θ

in the course of the proof.

For each gv, consider the gradient oracle Ov which on query x outputs independent

values for each coordinate, with the ith coordinate taking values B
b
√
d
· ∂f

+
i (x)
∂xi

and B
b
√
d
· ∂f

−
i (x)
∂xi

with probabilities 1+2δv(i))
2 and 1−2δv(i)

2 , respectively.

Note that we have
∣∣∣∣∂f+

i (x)
∂xi

∣∣∣∣ , ∣∣∣∣∂f−i (x)
∂xi

∣∣∣∣ ≤ b for all x and i, and therefore the gradient

estimate ĝ(x) supplied by the oracle Ov at x satisfies ‖ĝ(x)‖2
2 ≤ B2 with probability one,

for every query x ∈ X . Further, it is clear that X ∈ X2(D) and all the functions gv and

the corresponding oracles Ov belong to the strongly convex function family Osc.

Using our assumption that δ ≤ 1
2 ·

1−θ
1+θ , we obtain by Lemma 2.5.11

ψ(Gsc) ≥ 2ab2δ2

1− θ = 2a2b2δ2

4γ = B2δ2

2dγ , (2.23)
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where we first plug in a(1− θ) = 4γ and then substitute for a and b.

Completing the proof of Theorem 2.4.6 (Communication constraints). By pro-

ceeding as in Section 2.5.5, from Lemma 2.5.3 and using the inequality (2.23) above, we

have

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
B2δ2

12γ

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )
 . (2.24)

It remains to bound ∑d
i=1 I

(
V (i) ∧ Y T

)
to complete the proof. Note that unlike the proof

in Section 2.5.5, the gradient estimates have different distributions for different x. However,

for a point x we can still express the gradient estimate ẑ(x) of gv(x) given by Ov as follows:

abbreviating f ′+i (x) := ∂f+
i (x)
∂xi

and f ′−i (x) := ∂f−i (x)
∂xi

, we have

ẑ(x)(i) = aZif
′+
i (x) + a(1− Zi)f ′−i (x), (2.25)

where Zi ∼ Ber(1/2 + δv(i)) and the Zi’s are mutually independent. Thus, for a fixed

x, ẑ(x) can be viewed as a function of {Zi}i∈[d]. Furthermore, for a channel W ∈ Wcom,r

consider the channel W ′
x which first passes the Bernoulli vector {Zi}i∈[d] through the

function ẑ(x)(i) and the resulting output is passed through the channel W . This composed

channel Wx belongs to Wcom,r, too.

Therefore, we can treat the independent copies of Z ∼ pv revealed by the oracle as

i.i.d. random variables X1, ..., Xn in Section 2.5.3. Further, note that at time t, the query

is for a point xt which is a random function of Y t−1, and so, Y T can be viewed as the

channel outputs with adaptively selected channels from Wcom,r. Thus, we can apply the

bounds in Theorem 2.5.8.

Doing so, analogously to the computations in Section 2.5.5,7 we get

∑
i∈[d]

I(v(i) ∧ {Yi}i∈[T ]) ≤
d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cδ2rT,

7As we have, in both cases, unknown Bernoulli product distribution over {−1, 1}d with bias vector
1
2 + δv.
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for an appropriate constant c, which in view of (2.24) leads to

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
B2δ2

12γ ·
[
1− 1√

d
·
√

2cTδ2r

]
= 1

192c ·
B2

γT
· d
r

the last equality by setting δ :=
√

d
8cTr . Finally, observe that this choice of δ indeed

satisfies δ < 1
2 ·

1−θ
1+θ , as long as T ≥ 2c · B2

D2 · d
γ2r

. This completes the proof.

Completing the proof of Theorem 2.4.3 (Privacy constraints). Proceeding as in

the proof of Theorem 2.4.6 above, we have the analogue of (2.24),

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥
B2δ2

12γ

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )
 .

As stated in the proof of Theorem 2.4.6, the privatization of the gradient ẑ(x) can be

viewed as first preprocessing {Zi}i∈[d] and the passing the preprocessed output through

the LDP channel. Such a composed channel also belongs to Wpriv,p. Thus, we can apply

the bound in Theorem 2.5.7 and proceed as in the proof of Theorem 2.4.1 to obtain

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cTδ2ε2

where c > 0 is an absolute constant. Choosing δ :=
√

d
8cTε2 , which makes 2δ less than 1−θ

1+θ

for T ≥ 2c · B2

D2 · d
γ2ε2

, for some universal positive constant c, then yields

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥ c0 ·
B2

γT
· d
ε2

for some absolute constant c0 > 0, concluding the proof.

Completing the proof of Theorem 2.4.8 (Computational constraints). As be-

fore, we can get

sup
X∈X2(D)

E∗(X ,Osc, T,Wobl) ≥ B2δ2

12γ

1−

√√√√2
d

d∑
i=1

I(V (i) ∧ Y T )
 .
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Recall that we can express the subgradient estimate as in (2.25). Note that for an oblivious

sampling channel Wt used at time t, specified by a probability vector (pj)j∈[d], the output

is given by

Yi = (aZJtf ′+Jt (x) + a(1− ZJt)f ′−Jt (x))eJt ,

where Jt = j with probability pj. To proceed, we observe that the Markov relation

V—{ZJt , Jt}t∈[T ]—Y T holds. Indeed, we can confirm this by noting that {ZJt}t∈[T ] are

generated i.i.d. from pV and, for each t ∈ [T ], Yt is a function of (Y t−1, ZJt , Jt) and a local

randomness U available only to the optimization algorithm which is independent jointly of

V and {ZJt , Jt}t∈[T ]. It follows that Y T itself is a function of U and {ZJt , Jt}t∈[T ], which

gives

I
(
V ∧ Y T | {ZJt , Jt}t∈[T ]

)
≤ I

(
V ∧ U | {ZJt , Jt}t∈[T ]

)
= 0. (2.26)

From the previous observation, we also get that the Markov relation V (i)—{ZJt , Jt}t∈[T ]—Y T

holds for every i ∈ [d]. Thus, by the data processing inequality for mutual information, we

have
d∑
i=1

I
(
V (i) ∧ Y T

)
≤

d∑
i=1

I
(
V (i) ∧ {ZJt , Jt}t∈[T ]

)
.

Now since vector (Zj)j∈[d] is a Bernoulli vector, the mutual information on the right-side

can be bounded by the same computation as in the proof of Theorem 2.4.7 using Theorem

2.5.9. This follows by observing that for all t ∈ [T ], (ZJt , Jt) is a function of ZJteJt , which

in turn can be seen as a output of the oblivious sampling channel for an input vector

(Zj)j∈[d]. Therefore, we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ cTδ2
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for an appropriate constant c and δ ≤ 1
6 , which in view of (2.24) leads to

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
B2δ2

12γ

[
1− 1√

d
·
√

2cTδ2

]
= 1
c0
· dB

2

γT
,

where the last identity is obtained by setting δ := c1

√
d
T
, where c0 and c1 are universal

positive constants. Finally, observe that this choice of δ indeed satisfies δ < 1
2 ·

1−θ
1+θ , as long

as T ≥ c2 · B
2

D2 · d
2

γ
, for some universal positive constant c2. This completes the proof.

2.6 Concluding Remarks

In this chapter, we derived lower bounds on the optimization error incurred by any first-

order algorithm when the stochastic gradients used by the optimization algorithm need

to be further processed to satisfy information constraints. We also saw that the gradient

processing schemes proposed in the literature and appropriate first-order algorithms almost

match our derived lower bounds in the case of privacy and computational constraints.

Therefore, in the rest of the first part, we will develop gradient compression algorithms to

match the lower bounds for communication-constrained optimization.



Chapter 3

Communication-Constrained

Optimization over Euclidean Space

3.1 Synopsis

For communication-constrained optimization over the Euclidean Space, where the subgradi-

ent estimate’s norm is almost surely bounded, we present Rotated Adaptive Tetra-iterated

Quantizer (RATQ), a fixed-length quantizer for subgradient estimates. RATQ is easy to

implement and involves only a Hadamard transform computation and adaptive uniform

quantization with appropriately chosen dynamic ranges. We show that RATQ along

with PSGD achieves the lower bound for communication-constrained optimization over

Euclidean Space.

We further extend our results for communication-Constrained optimization over Eu-

clidean space when the subgradient estimates are mean square bounded. In this setting,

we use a gain-shape subgradient quantizer which separately quantizes the Euclidean norm

and uses RATQ to quantize the normalized unit norm vector. We establish lower bounds

for performance of any optimization procedure and shape quantizer, when used with a

uniform gain quantizer. Finally, we propose an adaptive quantizer for gain which when

used with RATQ for shape quantizer outperforms uniform gain quantization and is, in

fact, close to optimal.

50
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The results presented in this chapter are from [68] and [69].

3.2 Introduction

In this chapter, we develop new algorithms to match the lower bounds for communication-

constrained optimization over Euclidean Space. More precisely, we study communication-

constrained optimization for convex and `2 lipschitz function family as well as strongly

convex and `2 lipschitz function family. We consider two oracle models: the first where

the subgradient estimate’s Euclidean norm is almost surely bounded and the second where

it is mean square bounded. While our lower bounds in Chapter 2 were derived for the

simpler, almost surely bounded oracles, where the subgradient estimates have their noise

almost surely bounded. In this setting, we also develop algorithms for the more general

mean square bounded oracle. Our main contributions include new quantizers for the

two oracle models and theoretical insights into the limitations imposed by heavy-tailed

gradient distributions admitted under the mean square bounded oracles. A more specific

description of our results and their relation to prior work is provided below.

3.2.1 Main contributions

We start with almost surely bounded oracles and consider communication-constrained

optimization for convex and `2 lipschitz function family. Our precision-dependent lower

bound in Theorem 2.4.4 shows that no optimization protocol using a first order oracle

and gradient updates of precision r < d bits can have optimization error smaller than

roughly
√
d/
√
rT . In particular, we need precision exceeding Ω(d) bits to get the classic

convergence rate of 1/
√
T for convex functions. As our main contribution, we propose a new

fixed-length quantizer we term Rotated Adaptive Tetra-iterated Quantizer (RATQ) that

along with projected subgradient descent (PSGD) is merely a factor of O(log log log log∗ d)

far from this minimum precision required to attain the O(1/
√
T ) convergence rate. In a

different setting, when the precision is fixed upfront to r, we modify RATQ by roughly

quantizing and sending only a subset of coordinates of the rotated vector. We show
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that this modified version of RATQ is only a factor O(log log∗ d) far from the optimal

convergence rate. For almost sure bounded oracles, all our results for convex and `2

lipschitz family are then extended to strongly convex and `2 lipschitz family.

For mean square bounded oracles, we state our results for convex and `2 lipschitz family.

However, most of our results in this setting can be extended to strongly convex family

mutatis mutandis. In this setting, most of the prior work makes an additional assumption

that the gradient norm can be expressed using only a finite number of bits without accruing

any quantization error. One of our main contributions for mean square bounded oracles

is to analyse the quantization error without any such additional assumptions. For such

oracles, we establish an information theoretic lower bound in Section 3.5.1 which shows

(using a heavy-tailed oracle) that the precision used for gain1 quantizer must exceed log T

when the gain is quantized uniformly for T iterations and we seek O(1/
√
T ) optimization

accuracy. Thus, if 32 bits are used to describe the gain using a uniform quantizer, they

will suffice for roughly a billion iterations. Interestingly, we present a new, adaptive gain

quantizer which can attain the same performance using only log log T bits for quantizing

gain. In particular, using our scheme, only 5 bits assigned for describing gain will suffice

for a billion iterations; these many bits will work for less than 100 iterations using uniform

gain quantizers. In a different setting, when the precision is fixed upfront we propose a

quantizer which along with PSGD achieves the almost optimal convergence rate.

3.2.2 Remarks on techniques

In this work we use adaptive quantizers with multiple dynamic-ranges {[−Mi,Mi] : i ∈ [h]},

with possibly a different dynamic range chosen for each coordinate. Once a dynamic-

range [−Mi,Mi] is chosen for a coordinate, the coordinate is quantized uniformly within

this dynamic-range using k levels. Using a different dynamic-range for each coordinate

allows us to reduce error per coordinate, but costs us in communication since we need to

communicate which Mi is used for each coordinate. In devising our scheme, we need to

1In the vector quantization literature, the norm of the vector to be quantized is called the gain and
vector normalized by this norm is called the shape.
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carefully balance this tradeoff. We do this by taking recourse to the following observation:

when the same dynamic range is chosen for all coordinates, the mean square error per

coordinate roughly grows as

O

(∑
i∈[h] M

2
i · p(Mi−1)

(k − 1)2

)
, (3.1)

where p(M) is the probability of the `∞ norm of the input vector exceeding M and k

denotes the number of levels of the uniform quantizer. This observation allows us to relate

the mean square error to the tail-probabilities of the `∞ norm of the input vector. In

particular, we exploit it to decide on the subvectors which we quantize using the same

dynamic range.

As an aside, we believe that this approach and equation (3.1), in particular, will yield

very efficient rate-distortion codes for various sources with different tail probabilities,

answering questions of fundamental interest and having many applications. We point out

an application to the classic Gaussian rate-distortion problem in Chapter 6.

We use another classic trick (see [34]): we transform the input vector before we apply

our adaptive quantizer. In particular, we use a randomized transform that expresses

the input vector over a random basis. The specific choice of our random transform is

determined by our assumption for the gradients, namely that their `2 norms are almost

surely bounded by B.

Drawing from these ideas, we propose the quantizer RATQ for quantizing random

vectors with `2 norm almost surely bounded by B.

We remark that using an adaptively chosen dynamic-range can alternatively be im-

plemented by transforming the input using a monotone function. This, too, is a classic

technique in quantization known as companding (cf. [34]). Companding is known as a

popular alternative to entropic coding for fixed-length codes. However, to the best of our

knowledge, this work is the first to combine it with other techniques and rigorously analyze

it for the `2 norm bounded vector quantization problem. Perhaps it is a bit surprising

that this combination of classic technique was not analysed for constructing an efficient

covering of the unit Euclidean ball, the problem underlying our quantization problem.
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Moving to oracles with mean square bounded `2 norms, we take recourse to gain-shape

quantizers and quantize the (normalized) shape vector using RATQ. However, unlike prior

work, we rigorously treat gain quantization. Our proposed quantizer for gain is once again

an adaptive quantizer.

Our lower bounds derived in Chapter 2 use almost surely bounded oracles as the

difficult oracle. However, this only allows us to obtain lower bounds for the almost surely

bounded setting. For the mean square bounded setting, we need a new construction with

“heavy tails”. In particular, our proposed heavy-tailed construction shows a bottleneck for

uniform gain quantizers which can be circumvented by our proposed quantizer, thereby

establishing a strict improvement over uniform gain quantizers.

3.2.3 Prior work

Our work is motivated by the results in [9, 88], and we elaborate on the connection.

Specifically, [9] considers a problem very similar to ours. The paper [88] considers the

related problem of distributed mean estimation – we elaborate on the distributed mean

estimation results in Chapter 5 – but the quantizer and its analysis is directly applicable

to distributed optimization. The two papers present different quantizers that encode each

input using a variable number of bits. Both these quantizers require the optimal expected

precision to achieve the 1/
√
T convergence rate for almost surely bounded oracles. However,

their worst-case (fixed-length) performance maybe suboptimal. Our proposed quantizer

RATQ requires a precision only slightly more than the optimal precision to achieve the

1/
√
T convergence rate for almost surely bounded oracles, while still being fixed-length.

Moreover, in the slightly different setting of operating for any precision constraint r less

than the dimension, we significantly improve upon the current state-of-the-art.

In fact, the problem of designing fixed-length quantizers for almost surely bounded

oracles is closely related to designing small-size covering for the Euclidean unit ball. There

has been a longstanding interest in this problem in the vector quantization and information

theory literature (cf. [19, 27,34,47,55,92]).

In a slightly different direction, a seminal, but perhaps not so widely known, result
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of [100] provides a very simple universal quantizer for random vectors with independent

and identically distributed (iid) coordinates, with each coordinate almost surely bounded.

In this scheme, we first quantize each coordinate uniformly, separately using a “scalar-

quantizer,” and then apply a universal entropic compression scheme to the quantized

vector. We note that the variable-length schemes proposed in [9,88] are very similar, albeit

with a specific choice of the entropic compression scheme.

All these schemes (the ones in [9, 88, 100]) are variable-length schemes, while it is

desirable to get a fixed-length scheme for the ease of both protocol and hardware im-

plementation. We remark that indeed [88] presents an interesting randomly-rotate and

quantize fixed-length scheme, but it still requires communicating O(log log d) times more

than the optimal fixed-length quantizer for the unit Euclidean ball given in [92]. To the

best of our knowledge, prior to our work, the quantizer in [88] is the best known efficient

fixed-length quantizer for the unit Euclidean ball.

In fact, a randomized orthogonal transform scheme similar to that in [88] appeared

almost concurrently in [39] as well, where an analysis for Gaussian source is presented.

However, a rate-distortion analysis has not been done in [39]. Remarkably, an early

instance of the “rotated dithering” scheme for distributing energy equally appears in the

image compression literature in [75], albeit without formal error or performance analysis.

Another interesting scheme was proposed in [8] where nonuniform quantization (using

companding) was combined with dithering. Our adaptive choice of dynamic range for

uniform quantizers is similar, in essence, to companding. But our scheme differs from the

one in [8] in several ways: First, [8] uses the knowledge of input distribution to design

their companding function, whereas we only need knowledge of the tail behaviour of the

input distribution in our setting; second, we apply a random rotation to our input leading

to a universal quantizer, which is not needed in [8]; and finally, the specific structure of our

quantizer with adaptive dynamic ranges makes it amenable to mean square error analysis

for a large variety of sources.

Another scheme, similar, in spirit, to [88], appears earlier in [62]. In this scheme,

the input vector is preprocessed using a redundant system of vectors (the resulting
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representation is called Kashin’s representation) instead of random rotation as in [88].

In theory, if the underlying system of vectors satisfies certain desirable properties, then

preprocessing the vector in this manner and then uniformly quantizing each coordinate in

the representation will lead to an orderwise optimal fixed-length quantizer for the unit

ball. Unfortunately, [62] provides only a randomized constructions2 for the system of

vectors that satisfy the aforementioned properties with high probability. Thus, the scheme

in [62] is not explicit. Further, as a side remark, we note that the preprocessing step in

[62] requires O(d2 log d) real operations, much worse than the O(d log d) real operations

required by RATQ.

Another recent independent work [33] presents a different scheme where a different

random transform is used instead of random rotation. The optimal scheme in [33] is similar

to the one in [62] and in essence to classical information-theoretic schemes (cf. [92], [55]).

Specifically, [33] provides a randomized algorithm that outputs the orderwise optimal

quantizer for the unit ball without an explicit construction. Moreover, the time complexity

of the overall quantization procedure in [33] is much worse than RATQ.

Returning to the literature on quantizers for first order stochastic optimization, prior

works including [9] remain vague about the analysis for mean square bounded oracles. Most

of the works use gain-shape quantizers that separately quantize the Euclidean norm (gain)

and the normalized vector (shape). But they operate under an engineering assumption:

“the standard 32 bit precision suffices for describing the gain.” One of our goals in this

work is to carefully examine this heuristic. For instance, can we use a simple uniform

quantizer for gain with 32 bits, or even say 8 bits?

Independent of our work, a non-uniform quantizer similar to the one we use for gain-

quantization with geometrically increasing dynamic-ranges appears in [78]. However, there

are some key differences between the two quantizers. First, note that we use this quantizer

for gain-quantization, while [78] uses it to quantize the shape. Second, in the case of

our quantizer the geometrically growing dynamic ranges are further quantized uniformly

2Note that randomly producing the optimal quantizer with high probability is different from constructing
the optimal random quantizer, as we do. The former only gives high probability guarantees for bounds on
loss, but need not yield a bound for expected loss.
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whereas [78] chooses to use geometrically growing points as final quantization points. Third,

the analysis of mean square quantization error in this work and [78] differ significantly.

In particular, our mean square analysis follows from the general principle stated in (3.1),

whereas [78] builds upon the analysis of QSGD in [9]. Finally, the setting considered in

[78] is similar to that of [9] where quantization is followed by entropic compression. In

particular, the fixed-length performance may be suboptimal for almost surely bounded

oracles and mean square bounded oracles are not handled.

Organization

We formalize our problem in the next section and describe our results for almost surely

and mean square bounded oracles in Sections 3.4 and 3.5, respectively, along with some of

the shorter proofs. The more elaborate proofs are provided in Section 3.6, with additional

details relegated to Section 3.7.

3.3 Setup and preliminaries

3.3.1 Setup

In the next two chapters, we develop efficient subgradient compression algorithms for the

setting of communication-constrained first-order optimization described in the previous

Chapter. Our domain X throughout this chapter has Euclidean diameter less than D.

That is,

X ∈ X2(D) = {X ′ : sup
x,y∈X ′

‖x− y‖2 ≤ D.} (3.2)

For the domain of optimization X , we develop subgradient compression schemes for

function and oracle families given by Oc,2 and Osc, which are defined in Definitions 2.3.3

and 2.3.6, respectively.

We remark that the typical assumption made on the optimization literature on the

oracle noise is that it is mean square bounded. That is, for a query point x ∈ X , the oracle
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random estimates of the subgradient ĝ(x) which for all x ∈ X satisfy

E
[
‖ĝ(x)‖2

2|x
]
≤ B2, (3.3)

where ∂f(x) denotes the set of subgradients of f at x. In this chapter, we also want

to develop schemes for mean square bounded oracles. Towards that end, we define

generalization of class Om
c,2 below.

Definition 3.3.1 (Convex and `2 Lipschitz function family for a mean square bounded

oracle Om
c,2). We denote by Om

c,2 the set of all pairs of functions and oracles satisfying

Assumptions (2.4), (2.5), and (3.3).

Thus the assumption (2.6) is replaced by (3.3) for mean square bounded families.

Clearly,

E∗(X ,Om
c,2, T,Wcom,r) ≥ E∗(X ,Oc,2, T,Wcom,r).

Therefore, the lower bounds derived in Chapter 2 derived for almost surely bounded

oracles still hold for mean square bounded oracles. Although, we still derive another

lower for mean square bounded oracle to point out the limitations of specific quantization

procedures in Section 3.5.

3.3.2 Structure of our protocols

It will be instructive to recall the definition of the quantizer, since the the outputs of

the oracle are passed through a quantizer. An r-bit quantizer consists of randomized

mappings3 (Qe, Qd) with the encoder mapping Qe : Rd → {0, 1}r and the decoder mapping

Qd : {0, 1}r → Rd. The overall quantizer is given by the composition mapping Q = Qd ◦Qe.

In both this Chapter and the next Chapter, we restrict to memoryless quantization

schemes where the same quantizer will be applied to each new gradient vector, without

using any information from the previous updates. Specifically, at each instant t and

3We can use public randomness U for randomizing.
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for any precision r, the quantizers in Wr do not use any information from the previous

time instants to quantize the subgradient outputted by O at t. Our primary motivation

for restriction to memoryless quantization schemes is ease of implementation and their

application to other problems, as we see in Chapter 5 and 6.

Thus our channel selection strategy S is nonadaptive (recall definition 2.3.2) and is

simply denoted by the quantizer Q we choose to use. Thus the optimization error for a

function f and oracle O when employing a first order optimization π and quantizer Q is

given by

E(f,O, π,Q) = E [f(xT )]− E [f(x∗] .

3.3.3 Quantizer performance for finite precision optimization

Our overall optimization protocol throughout is the projected SGD (PSGD) (see [15]).

In fact, we establish lower bound showing roughly the optimality of PSGD with our

quantizers.

In PSGD the standard SGD updates are projected back to the domain using the

projection map ΓX given by ΓX (y) := minx∈X ‖x − y‖2. We use the quantized PSGD

algorithm described in Algorithm 3.1.

Require: x0 ∈ X , η ∈ R+, T and access

to composed oracle QO

1: for t = 0 to T − 1 do

xt+1 = ΓX (xt − ηtQ(ĝ(xt)))

2: Output: 1
T
·∑T

t=1 xt

Algorithm 3.1: Quantized PSGD with quantizer Q

The quantized output Q(ĝ(xt)), too, constitutes a noisy oracle, but it can be biased for

mean square bounded oracles. Though biased first-order oracles were considered in [45], the

effect of quantizer-bias has not been studied in the past. The performance of a quantizer

Q, when it is used with PSGD for mean square bounded oracles, is controlled by the
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worst-case L2 norm αm
2(Q) of its output and the worst-case bias βm

2(Q) defined as4

αm
2(Q) := sup

Y ∈Rd:E[‖Y ‖22]≤B2

√
E [‖Q(Y )‖2

2],

βm
2(Q) := sup

Y ∈Rd:E[‖Y ‖22]≤B2
‖E [Y −Q(Y )] ‖2. (3.4)

The corresponding quantities for almost surely bounded oracles are

α2(Q) := sup
Y ∈Rd:‖Y ‖2≤B a.s.

√
E [‖Q(Y )‖2

2],

β2(Q) := sup
Y ∈Rd:‖Y ‖2≤B a.s.

‖E [Y −Q(Y )] ‖2. (3.5)

Using a slight modification of the standard proof of convergence for PSGD, we get the

following result for convex functions.

Theorem 3.3.2. Let the domain X satisfy 3.2. For any quantizer Q, the output xT of

optimization protocol π given in Algorithm 3.1 satisfies

sup
(f,O)∈Oc,2

E(f,O, π,Q) ≤ D

(
α2(Q)√

T
+ β2(Q)

)
,

sup
(f,O)∈Om

c,2

E(f,O, π,Q) ≤ D

(
αm

2(Q)√
T

+ βm
2(Q)

)
,

when the parameter ηt = η, for all t, is set to D/(α2(Q)
√
T ) and D/(αm

2(Q)
√
T ), respec-

tively.

See Section 3.6.1 for the proof.

Remark 8 (Knowledge of time horizon in setting the learning rate.). Note that the choice

of learning rate ηt in 3.3.2 requires the knowledge of the time horizon T . In fact, all the

convergence results in this thesis require setting ηt based on the time horizon. One could

employ the doubling trick –see, for instance, [70, Pg. 129] – to remove this restriction.

However, this would add a multiplicative
√

log T factor to the convergence rate.

4We omit the dependence on B and d from our notation.
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We have also have the following counterpart of the previous result for strongly convex

functions.

Theorem 3.3.3. Let the domain X satisfy 3.2. For any quantizer Q, the output xT of

optimization protocol π given in Algorithm 3.1 satisfies

sup
(f,O)∈Osc

E(f,O, π,Q) ≤ D

(
α2(Q)2

DγT
+ β2(Q)

)
.

when the parameter ηt is set to 2/γ(t+ 1).

See Section 3.6.2 for the proof.

Remark 9 (Choice of learning rate). For the class of convex functions, we fix the parameter

ηt of Algorithm 3.1 to a constant value η, for all t. η is set to D/(α2(Q)
√
T ) and

D/(αm
2(Q)
√
T ) for all the results in Section 3.4 and Section 3.5, respectively. For the class

of strongly convex functions, we fix the parameter ηt = 2/γ(t+ 1) all the results in Section

3.4.

3.4 Main results for almost surely bounded oracles

Our main results will be organized along two regimes: the high-precision and the low-

precision regime. For the high-precision regime, we seek to attain the optimal, classic

convergence rate of 1/
√
T , for convex functions, and 1/T , for strongly convex functions,

using the minimum precision possible. For the low-precision regime, we seek to attain the

fastest convergence rate possible for a given, fixed precision r.

From our lower bounds on minmax optimization error of families Oc,2 and Osc under

communication constraints, which are derived in Theorem 2.4.4 and 2.4.6, we have the

following corollaries. Our corollaries show that there is no hope of getting the desired

convergence rate of 1/
√
T for convex function and `2 lipschitz function families (Oc,2, Om

c,2)

and 1/T for strongly convex function families Osc by using a precision of less than d.
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Corollary 3.4.1. Let X2(D) = {X ′ : supx,y∈X ′ ‖x−y‖2 ≤ D}. Then, the precision r must

be at least Ω(d), for either one of the following to hold:

sup
X∈X2(D)

E∗(X ,Oc,2, T,Wcom,r) ≤
DB√
T
, sup

X∈X2(D)
E∗(X ,Om

c,2, T,Wcom,r) ≤
DB√
T
,

and sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≤
B2

γT
.

Thus, from Corollary 3.4.1, our quantization schemes in high-precision regime will use

a precision of atleast d bits.

3.4.1 RATQ: Our quantizer for the `2 ball

We propose Rotated Adaptive Tetra-iterated Quantizer (RATQ) to quantize any random

vector Y with ‖Y ‖2
2 ≤ B2, which is what we need for almost surely bounded oracles. RATQ

first rotates the input vector, then divides the coordinates of the rotated vectors into

smaller groups, and finally quantizes each subgroup-vector using a Coordinate-wise Uniform

Quantizer (CUQ). However, the dynamic-range used for each subvector is chosen adaptively

from a set of tetra-iterated levels. We call this adaptive quantizer Adaptive Tetra-iterated

Uniform Quantizer (ATUQ), and it is the main workhorse of our construction. The encoder

and decoder for RATQ are given in Algorithm 3.2 and Algorithm 3.3, respectively. The

details of all the components involved are described below.

Require: Input Y ∈ Rd, rotation matrix R

1: Compute Ỹ = RY

2: for i ∈ [d/s] do

Ỹ T
i = [Ỹ ((i− 1)s+ 1), · · · Ỹ (min{is, d})]T

3: Output: Qe
at,R(Y ) = {Qe

at(Ỹ1) · · ·Qe
at(Ỹdd/se)}

Algorithm 3.2: Encoder Qe
at,R(Y ) for RATQ

Rotation and division into subvectors. RATQ first rotates the input vector by

multiplying it with a random Hadamard matrix. Specifically, denoting by H the d × d
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Require: Input {Zi, ji} for i ∈ [dd/se], rotation matrix R

1: Ŷ T = [Qd
at(Z1, j1), · · · , Qd

at(Zdd/se, jdd/se)]T

2: Output: Qd
at,R({Zi, ji}dd/sei=1 ) = R−1Ŷ

Algorithm 3.3: Decoder Qd
at,R(Z, j) for RATQ

Walsh-Hadamard Matrix (see [44])5, define

R := 1√
d
·HD, (3.6)

where D is a diagonal matrix with each diagonal entry generated uniformly from {−1,+1}.

The input vector y is multiplied by R in the rotation step. The matrix D can be generated

using shared randomness between the encoder and decoder.

Next, the rotated vector of dimension d is partitioned into dd/se smaller subvectors.

The ith subvector comprises the coordinates {(i−1)s+ 1, · · · ,min{is, d}}, for all i ∈ [d/s].

Note that the dimension of all the sub vectors except the last one is s, with the last one

having a dimension of d− sbd/sc.

Remark 10. As an aside, we remark that preprocessing the data by such a random transform

R was used by [7] for Fast Johnson Lindestrauss transform.

We now describe the advantage of random rotation. The advantage of subvector

division will be clear once we describe the rest of the scheme.

Remark 11 (Advantage of random rotation). While by almost sure assumption the input

vector to the quantizer is inside the Euclidean ball of radius B, to set the dynamic range6,

we need upper bounds for each coordinate of the vector. After random rotation, each

coordinate of the input vector is a centered subgaussian random variable with a variance

of O(B2/d), as opposed to a variance factor of O(B2), which is all that can be said for the

original input vector.

5We assume that d is a power of 2.
6We mean the interval [−M,M ].
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Coordinate-wise Uniform Quantizer (CUQ). RATQ uses CUQ as a subroutine;

we describe the latter for d dimensional inputs, but it will only be applied to subvectors of

lower dimension in RATQ. CUQ has a dynamic range [−M,M ] associated with it, and it

uniformly quantizes each coordinate of the input to k-levels as long as the component is

within the dynamic-range [−M,M ]. Specifically, it partitions the interval [−M,M ] into

parts I` := (BM,k(`), BM,k(`+ 1)], ` ∈ {0, . . . , k − 1}, where BM,k(`) are given by

BM,k(`) := −M + ` · 2M
k − 1 , ∀ ` ∈ {0, . . . , k − 1}.

Then, for a coordinate y ∈ (BM,k(`), BM,k(`+1)], CUQ randomly outputs either BM,k(`) or

BM,k(`+ 1) with probabilities such that the output value equals the input y in expectation.

Note that each output coordinate of the CUQ encoder takes k + 1 values – k of these

symbols correspond to the k uniform levels and the additional symbol corresponds to

the overflow symbol ∅. Thus we need a total precision of d dlog(k + 1)e bits to represent

the output of the CUQ encoder. The encoder and decoders used in CUQ are given in

Algorithms 3.4 and 3.5, respectively. In the decoder, we have set BM,k(∅) to 0.

Require: Parameter M ∈ R+ and input Y ∈ Rd

1: for i ∈ [d] do

2: if |Y (i)| > M then

Z(i) = ∅

3: else

4: for ` ∈ {0, . . . , k − 1} do

5: if Y (i) ∈ (BM,k(`), BM,k+1(`+ 1)] then

Z(i) =


`+ 1, w.p.

Y (i)−BM,k(`)
BM,k(`+1)−BM,k(`)

`, w.p.
BM,k(`+1)−Y (i)

BM,k(`+1)−BM,k(`)

6: Output: Qe
u(Y ;M) = Z

Algorithm 3.4: Encoder Qe
u(Y ;M) of CUQ
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Require: Parameter M ∈ R+, input Z ∈ {0, . . . , k − 1, ∅}d

1: Set Ŷ (i) = BM,k(Z(i)), for all i ∈ [d]

2: Output: Qd
u(Z;M) = Ŷ

Algorithm 3.5: Decoder Qd
u(Z;M) of CUQ

Adaptive Tetra-iterated Uniform Quantizer (ATUQ). The quantizer ATUQ is

CUQ with its dynamic-range chosen in an adaptive manner. In order to a quantize a

particular input vector, it first chooses a dynamic range from [−Mi,Mi], 1 ≤ i ≤ h. To

describe these Mis, we first define the ith tetra-iteration for e, denoted by e∗i, recursively

as follows:

e∗0 := 1, e∗1 := e, e∗i := ee
∗(i−1)

, i ∈ N.

Also, for any non negative number b, we define ln∗ b := inf{i ∈ N : e∗i ≥ b}. With this

notation, the values Mis are defined in terms of m and m0 as follows:

M2
i = m · e∗i +m0, ∀ i ∈ {0, . . . , h− 1},

where the parameters m and m0 will be set later. ATUQ finds the smallest level Mi which

bounds the infinity norm of the input vector; if no such Mi exists, it simply uses Mh−1. It

then uses CUQ with dynamic range [−Mi,Mi] to quantize the input vector. In RATQ,

we apply ATUQ to each subvector. The decoder of ATUQ is simply the decoder of CUQ

using the dynamic range outputted by the ATUQ encoder.

Note that in order to represent the output of ATUQ for d dimensional inputs, we

need a precision of at the most dlog he+ d dlog(k + 1)e bits: dlog he bits to represent the

dynamic range and at the most d dlog(k + 1)e bits to represent the output of CUQ. The

encoder and decoder for ATUQ are given in Algorithms 3.6 and 3.7, respectively.

When ATUQ is applied to each subvector in RATQ, each of the dd/se subvectors are

represented using less than dlog he + s dlog(k + 1)e bits. Thus, the overall precision for
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Require: Input Y ∈ Rd

1: if ‖Y ‖∞ > Mh−1 then

Set M∗ = Mh−1

2: else

Set j∗ = min{j : ‖Y ‖∞ ≤Mj}, M∗ = Mj∗

3: Set Z = Qe
u(Y ;M∗)

4: Output: Qe
at(Y ) = {Z, j∗}

Algorithm 3.6: Encoder Qe
at(Y ) for ATUQ

Require: Input {Z, j} with Z ∈ {0, . . . , k − 1, ∅}d and j ∈

{0, . . . h− 1}

1: Output: Qd
at(Z, j) = Qd

u(Z;Mj)

Algorithm 3.7: Decoder Qd
at(Z, j) for ATUQ

RATQ is less than7

dd/se · dlog he+ d dlog(k + 1)e

bits. The decoder of RATQ is simply formed by collecting the output of the ATUQ

decoders for all the subvectors to form a d-dimensional vector, and rotating it back using

the matrix R−1 (the inverse of the rotation matrix used at the encoder).

Remark 12 (Advantage of division into subvectors). The overall precision of RATQ allows

us to understand the advantage of clubbing multiple coordinates into subvectors. Since we

use the same dynamic range for all coordinates of a subvector, we save on coordinate-wise

communication of the dynamic range.

Remark 13 (Mean square error of ATUQ). The per coordinate mean square error between

the input to ATUQ and its output roughly grows as

O

(∑
i∈[h] M

2
i · p(Mi−1)

(k − 1)2

)
, (3.7)

7log denotes the logarithm to the base 2, ln denotes logarithm to the base e.
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where p(M) is the probability of the `∞ norm of the input vector exceeding M and k

denotes the number of levels of the uniform quantizer. This observation allows us to relate

the mean square error to the tail-probabilities of the `∞ norm of the input vector. In

particular, we exploit it to decide on the dimension s of subvectors as well as the growth

rate of Mis.

Remark 14 (Growth rate of Tetration). A key distinguishing feature of RATQ is choosing

the set of Mis to grow as a tetration, roughly as Mi+1 = eMi . The large growth rate

of a tetration allows us to cover the complete range of each coordinate using only a

small number of dynamic ranges, which leads to an unbiased quantizer and reduces the

communication. Also, after random rotation, each coordinate of the vector is a centered

subgaussian random variable with a variance-parameter of O(B2/d) (see Remark 11),

which, despite the large growth rate of a tetration, ensures that the per coordinate mean

square error between the quantized output and the input is almost a constant, as can be

seen from (3.7).

Choice of parameters. Throughout the remainder of this section, we set our parameters

m, m0, and h as follows

m = 3B2

d
, m0 = 2B2

d
· ln s, log h = dlog(1 + ln∗(d/3))e . (3.8)

In particular, this results in Mh−1 ≥ B whereby, for an input Y with ‖Y ‖2
2 ≤ B2, RATQ

outputs an unbiased estimate of Y .

We close with a remark on the computational complexity of RATQ.

Remark 15 (Computational complexity of RATQ). Since R is a Hadamard matrix, the

matrix multiplication at the encoder and the decoder requires O(d log d) real operations8.

Further, it takes O(log h) real operations to find the dynamic-range for each subvec-

tor, whereby the overall complexity for finding dynamic-ranges for dd/se subvectors is

O(dd/se log h) real operations; we can represent each of these dynamic-ranges as a log h-bit

8Each addition, subtraction, multiplication, or division operation on the real field will be referred to as
a real operation
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binary string in another O(dd/se log h) real operations, too. Note that the encoding

complexity of CUQ for an input subvector of dimension s is s real operations, and thus,

the overall complexity of dd/se CUQ operations is O(d) real operations. Finally, we need

O(d log k) real operations to represent the quantized values of d coordinates to k levels

log k-bit binary strings. Putting it all together, the overall complexity of the encoding

procedure is O(d log d+ d log h/s+ d log k). By similar arguments, the complexity of real

operations at the decoder would also be O(d log d+ d log h/s+ d log k).

Throughout the chapter, our choice of parameters s, h, and k for RATQ, which is

roughly the optimal choice of these parameters for quantizing the `2 ball, would result

in quantities d log h/s and d log k to be much lesser than d log d. Thus, for parameters as

chosen in this chapter or other reasonable choices of s, h, k, the encoding and decoding

complexity of RATQ is O(d log d). Note that the random rotation based quantizer from

[88] also has encoding and decoing complexity of O(d log d).

3.4.2 RATQ in the high-precision regime

The following result shows that RATQ is unbiased for almost surely bounded inputs and

provides a bound for its worst-case second order moment; this constitutes a key technical

tool for characterizing the performance of RATQ.

Theorem 3.4.2 (Performance of RATQ). Let Qat,R be the quantizer RATQ with Mjs set

by (3.8). Then, for all s, k ∈ N,

α2(Qat,R) ≤ B

√
9 + 3 ln s
(k − 1)2 + 1, β2(Qat,R) = 0. (3.9)

The proof is deferred to Section 3.6.3.

Thus, α2 is lower when s is small, but the overall precision needed grows since the

number of subvectors increases. The following choice of parameters yields almost optimal

performance:

s = log h, log(k + 1) =
⌈
log(2 +

√
9 + 3 ln s)

⌉
. (3.10)
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For these choices, we obtain the following.

Corollary 3.4.3. The overall precision r used by the quantizer Q = Qat,R with parameters

set as in (3.8), (3.10) satisfies

r ≤ d(1 + ∆1) + ∆2,

where ∆1 =
⌈
log

(
2 +
√

9 + 3 ln ∆2
)⌉

and ∆2 = dlog(1 + ln∗(d/3))e.

Furthermore, the optimization protocol π given in Algorithm 3.1 satisfies

sup
(f,O)∈Oc,2

E(f,O, π,Q) ≤
√

2DB√
T

and

sup
(f,O)∈Osc

E(f,O, π,Q) ≤ 2B2

γT
.

Proof. By the description RATQ, it encodes the subgradients using a fixed-length code of

at the most dd/se·dlog he+d dlog(k + 1)e bits. Upon substituting s, log h, and log(k+1) as

in (3.10) and (3.8), we obtain that the total precision is bounded above by d(1 + ∆1) + ∆2.

For the second statement of the corollary, we have

sup
(f,O)∈Oc,2

E(f,O, π,Q) ≤ D

(
α2(Qat,R)√

T
+ β2(Qat,R)

)

≤ DB√
T
·
√

9 + 3 ln s
(k − 1)2 + 1

≤
√

2DB√
T

,

where the first inequality follows by Theorem 3.3.2, the second inequality follows by

upper bounding α2(Qat,R) and β2(Qat,R) using Theorem 3.4.2, and the third follows by

substituting the parameters in the corollary statement. The upper bound for the strongly

convex family follows in precisely the same manner. In particular, by combining Theorem

3.3.3 with Theorem 3.4.2, we have

sup
(f,O)∈Osc

E(f,O, π,Q) ≤ 2B2

γT
.
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Remark 16. The precision requirement in Corollary 3.4.3 matches the d-bit lower bound

of Corollary 3.4.1 upto a multiplicative factor of O (log log log ln∗(d/3)).

3.4.3 RATQ in the low-precision regime

We present a general method for reducing precision to much below d. This scheme is

applicable when the output of the quantizer’s encoder is a d length vector, where each

coordinate is a separate fixed-length code. We simply reduce the length of the output

message vector from the quantizer’s encoder by sub-sampling a subset of coordinates

using shared randomness. The decoder obtains the values of these coordinates using the

decoder for the original quantizer and sets the rest of the coordinate-values to zero. This

subsampling layer, which we call the Random Coordinate Sampler (RCS), can be added

to RATQ after applying random rotation. In particular, RATQ we need the parameter

s of these quantizers to be set to 1. This requirement of setting s = 1 ensures that

the subsampled coordinates of the rotated vector can be decoded separately. This is

a randomized scheme and requires the encoder and the decoder to share a random set

S ⊂ [d] distributed uniformly over all subsets of [d] of cardinality µd.

The encoder Qe
S of RCS simply outputs the vector

Qe
S(Y ) := {Y (i), i ∈ S},

and the decoder Qd
S(Ỹ ), when applied to a vector Ỹ ∈ Rµd, outputs

Qd
S(Ỹ ) := µ−1∑

i∈S
Ỹ (i)ei,

where ei denotes the ith element of standard basis for Rd.

We can compose RCS with RATQ with parameter s = 1 by setting the encoder to

Qe
S ◦ Qe, and setting the decoder to Qd ◦ Qd

S. Here we follow the convention that all

0-coordinates outputted by Qd
S are decoded as 0 by Qd. Note that since we need to retain
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RATQ encoder output for only µd coordinates, the overall precision of the quantizer is

reduced by a factor of µ. We analyze the performance of this combined quantizer in the

following theorem.

Theorem 3.4.4. Let Qat,R be RATQ with s = 1 and Q̃ be the combination of RCS and

Qat,R as described above. Then,

E
[
Q̃(Y )|Y

]
= E [Qat,R(RY )|Y ] and E

[
‖Q̃(Y )‖2

2|Y
]

= 1
µ
E
[
‖Qat,R(RY )‖2

2|Y
]
,

which further leads to

α2(Q̃) ≤ α2(Qat,R)
√
µ

and β2(Q̃) = β2(Qat,R).

Proof. By the description of Qat,R, we have

Q̃(Y ) = 1
µ
R−1∑

i∈S
Qat,I(RY )(i)ei,

where Qat,I is the output vector formed by combining the d quantized values outputted

by ATUQ (Qat) when input is the rotated vector. Namely,

Qat,I(RY ) = [Qat(RY (1)), · · · , Qat(RY (d))]T .

For the mean of Q̃(Y ), it holds that

E
[
Q̃(Y )|Y

]
= E

R−1∑
i∈d

Qat,I(RY )(i)ei
1
µ
1i∈S|Y


=
∑
i∈d

E
[
R−1Qat,I(RY )(i)ei|Y

]
· 1
µ
E [1i∈S|Y ]

=
∑
i∈d

E
[
R−1Qat,I(RY )(i)ei|Y

]

= E

R−1∑
i∈d

Qat,I(RY )(i)ei|Y
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= E
[
R−1Qat,I(RY )|Y

]
= E [Qat,R(RY )|Y ] , (3.11)

where the second identity follows from the fact that randomness used to generate a set

S is independent of the randomness used in the quantizer and the randomness of Y ; the

third identity holds since P (i ∈ S) = µ.

Next, moving to the computation of the second moment of the output of Q̃, we have

E
[
‖Q̃(Y )‖2

2|Y
]

= E
[
‖ 1
µ
R−1∑

i∈S
Qat,I(RY )(i)ei‖2

2|Y
]

= 1
µ2E

[
‖
∑
i∈S

Qat,I(RY )(i)ei‖2
2|Y

]

= 1
µ2

∑
i∈[d]

E
[
Qat,I(RY )(i)2|Y

]
E [1i∈S|Y ]

= 1
µ
E
[
‖Qat(RY )‖2

2|Y
]

= 1
µ
E
[
‖Qat,R(RY )‖2

2|Y
]
, (3.12)

where the second identity follows from the fact that R is a unitary matrix and the remaining

steps follow simply by the description of the quantizers used. It follows that

α(Q̃) = 1
√
µ
α(Qat,R), β(Q̃) = β(Qat,R).

We now set the parameter k to be a constant and sample roughly r coordinates.

Specifically, we set

s = 1, log(k + 1) = 3,

µd = min{d, br/(3 + dlog(1 + ln∗(d/3))e)c}. (3.13)

For these choices, we have the following corollary.
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Corollary 3.4.5. For r ≥ 3 + dlog(1 + ln∗(d/3))e, let Q be the composition of RCS and

RATQ with parameters set as in (3.8), (3.13). Then, the optimization protocol π in

Algorithm 3.1 satisfies

sup
(f,O)∈Oc,2

E(f,O, π,Q) ≤
√

2DB√
µT

,

sup
(f,O)∈Osc

E(f,O, π,Q) ≤ 2B2

µγT
.

Proof. When Q is a composition of RCS and RATQ, from Theorem 5.5.3 αm
2(Q) ≤

1√
µ
α(Qat,R), βm

2(Q) ≤ β(Qat,R), which by Theorem 3.3.2 yields

sup
(f,O)∈Oc,2

E(f,O, π,Q) ≤ D

(
α2(Qat,R)√

µT
+ β2(Qat,R)

)

≤ DB√
µT
·
√

9
(k − 1)2 + 1

≤
√

2DB√
T
·

√
d√

min {d, br/(3 + log ln∗(d/3))c}
,

where the second inequality follows from Theorem 3.4.2 with s = 1, and the final inequality

is obtained upon substituting the parameters as in the statement of the result. Similarly,

for strongly convex function family, the result follows by combining Theorem 2.4.6 and

5.5.3.

Remark 17. Note that the convergence rate slows down by a µ specified in (3.13), which

matches the lower bounds in Theorem 2.4.4 (for p = 2) and 2.4.6 upto a multiplicative

factor of O(log ln∗(d/3))

3.5 Main results for mean square bounded oracles

In this section, we present results only for the convex family. We do this to avoid repetition

since we can derive upper bounds for strongly convex family precisely in the same manner

as convex family, as seen from the previous section.
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With the mean square bounded assumption, we now need to quantize random vectors

Y such that E [‖Y ‖2
2] ≤ B2. We take recourse to the standard gain-shape quantization

paradigm in vector quantization (cf.[34]).

Definition 3.5.1 (Gain-shape quantizer). A Quantizer Q is defined to be a gain-shape

quantizer if it has the following form

Q(Y ) = Qg(‖Y ‖2) ·Qs(Y/‖Y ‖2),

where Qg is any R→ R quantizer and Qs is any Rd → Rd quantizer.

Specifically, we separately quantize the gain ‖Y ‖2 and the shape9 Y/‖Y ‖2 of Y , and

form the estimate of Y by simply multiplying the estimates for the gain and the shape.

Note that we already have a good shape quantizer: RATQ. We only need to modify the

parameters in (3.8) to make it work for the unit sphere; we set

m = 3
d
, m0 = 2

d
· ln s, log h = dlog(1 + ln∗(d/3))e . (3.14)

We now proceed to derive the worst-case α and β for a general gain-shape. In order to

make clear the dependence on B and d, we refine our notations for {αm
2(Q), βm

2(Q)} and

{α2(Q), β2(Q)}, defined in (3.4) and (3.5), respectively, to {αm
2(Q;B, d), βm

2(Q;B, d)} and

{α2(Q;B, d), β2(Q;B, d)}.

Theorem 3.5.2. Let Q(Y ) = Q1(‖Y ‖2) · Q2(Y/‖Y ‖2), where Q1 is any gain quantizer

and Q2 is any shape quantizer. Also, suppose Q1(‖Y ‖2) and Q2(Y/‖Y ‖2) are conditionally

independent given Y . Then,

αm
2(Q;B, d) ≤ αm

2(Q1;B, 1) · α2(Q2; 1, d).

Furthermore, suppose that Q2 satisfies

E [Q2(ys)] = ys, ∀ys s.t. ‖ys‖2
2 ≤ 1.

9For the event ‖Y ‖2 = 0, we follow the convention that Y/‖Y ‖2 = e1.
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Then, we have10

βm
2(Q;B, d) ≤ sup

Y ∈Rd:E[‖Y ‖22]≤B2
E
[∣∣∣∣∣E [Q1(‖Y ‖2)− ‖Y ‖2 | Y ]

∣∣∣∣∣
]
.

Proof. Denote by Ys the shape of the vector Y given by

Ys := Y

‖Y ‖2
.

The worst-case second moment: Towards evaluating α(Q;B, d), we have

E
[
‖Q(Y )‖2

2

]
= E

[
Q1(‖Y ‖2)2‖Q2(Ys)‖2

2

]
= E

[
E
[
Q1(‖Y ‖2)2‖Q2(Ys)‖2

2|Y
]]

= E
[
E
[
Q1(‖Y ‖2)2|Y

]
E
[
‖Q2(Ys)‖2

2|Y
]]

= E
[
E
[
Q1(‖Y ‖2)2|Y

]
E
[
‖Q2(Ys)‖2

2|Ys
]]
,

where the third identity follows by conditional independence of Q1(‖Y ‖2)2 and ‖Q2(Ys)‖2
2

given Y and the fourth follows from the law of iterated expectations.

Consider the random variable E [‖Q2(Ys)‖2
2|Ys]. We claim that this is less than

α0(Q2; 1, d) almost surely. Towards this end, note that

E
[
‖Q2(Ys)‖2

2|Ys = y
]

= E
[
‖Q2(y)‖2

2

]
,

since the randomness used in implementation of Q2 is independent of the input random

variable Y . Moreover, for any y with ‖y‖2
2 ≤ 1, we have from the definition of α2(Q2; 1, d)

that E [‖Q2(y)‖2
2] ≤ α2(Q2; 1, d)2. Therefore, for any Y with E [‖Y ‖2

2] ≤ B2, we have

E
[
‖Q(Y )‖2

2

]
= E

[
E
[
Q1(‖Y ‖2)2|Y

]
E
[
‖Q2(Ys)‖2

2|Ys
]]

≤ E
[
E
[
Q1(‖Y ‖2)2|Y

]]
· α2(Q2; 1, d)2

10The quantity on the right-side of this bound exceeds the bias βm
2(Q1;B, 1). Nonetheless, in all our

bounds for bias, this is the quantity we have been handling.
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= E
[
Q1(‖Y ‖2)2

]
· α2(Q2; 1, d)2

≤ αm
2(Q1;B, 1)2 · α2(Q2; 1, d)2. (3.15)

Taking the supremum of the left-side over all random vectors Y with E [‖Y ‖2
2] ≤ B2 gives

us the desired bound for αm
2(Q;B, d).

The worst-case bias: Towards evaluating βm
2(Q;B, d), we note from our hypothesis

that E [Q2(Ys)|Y ] = E [Q2(Ys)|Ys] = Ys, which further yields

E [Q(Y )− Y ] = E [E [Q1(‖Y ‖2)Q2(Ys)− Y |Y ]]

= E [E [Q1(‖Y ‖2)|Y ]E [Q2(Ys)|Y ]− Y ]

= E [E [Q1(‖Y ‖2)|Y ]Ys − ‖Y ‖2Ys]

= E [E [Q1(‖Y ‖2)− ‖Y ‖2|Y ]Ys] , (3.16)

where the second identity uses conditional independence of Q1(‖Y ‖2) and Q2(Ys). By

using the conditional Jensen’s inequality, we get

‖E [Q(Y )− Y ] ‖2 = ‖E [E [Q1(‖Y ‖2)− ‖Y ‖2|Y ]Ys] ‖2

≤ E [‖E [Q1(‖Y ‖2)− ‖Y ‖2|Y ]Ys‖2]

= E
[∣∣∣∣∣E [Q1(‖Y ‖2)− ‖Y ‖2|Y ]

∣∣∣∣∣
]
.

We remark that quantizers proposed in most of the prior work can be cast in this

gain-shape framework. Most works simply state that gain is a single parameter which can

be quantized using a fixed number of bits; for instance, a single double precision number

is prescribed for storing the gain. However, the quantizer is not specified. We carefully

analyze this problem and establish lower bounds when a uniform quantizer with a fixed

dynamic range is used for quantizing the gain. Further, we present our own quantizer

which significantly outperforms uniform gain quantization.
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3.5.1 Limitation of uniform gain quantization

We establish lower bounds for a general class of gain-shape quantizersQ(y) = Qg(‖y‖2)Qs(y/‖y‖2)

of precision r that satisfy the following structural assumptions:

1. (Independent gain-shape quantization) For any given y ∈ Rd, the output of

the gain and the shape quantizers are independent.

2. (Bounded dynamic-range) For any y ∈ Rd, there exists a M > 0 such that

whenever ‖y‖2 > M , Q(y) has a fixed distribution P∅.

3. (Uniformity) There exists m ∈ [M/2r,M ] such that for every t in [0,m],

(a) supp(Qg(t)) ⊆ {0,m};

(b) If P (Qg(t) = m) > 0, then

P (Qg(t2) = m)
P (Qg(t1) = m) ≤

t2
t1
, ∀ 0 ≤ t1 ≤ t2 ≤ m.

The first two assumptions are perhaps clear and hold for a large class of quantizers. The

third one is the true limitation and is satisfied by different forms of uniform gain quantizers.

For instance, for the one-dimensional version of CUQ with dynamic range [0,M ], which

is an unbiased, uniform gain quantizer with kg levels, it holds with m = M/(kg − 1)

(corresponding to the innermost level [0,M/(kg − 1)]). It can also be shown to include a

deterministic uniform quantizer that rounds-off at the mid-point. The third condition, in

essence, captures the unbiasedness requirement that the probability of declaring higher

level is proportional to the value. Note that (t2/t1) on the right-side can be replaced with

any constant multiple of (t2/t1). For easy reference, we will refer to these assumptions as

Structural Assumptions 1-3.

Below we present lower bounds for performance of any optimization protocol using a

gain-shape quantizer that satisfies the assumptions above. We present separate results for

high-precision and low-precision regimes, but both are obtained using a general construction

that exploits the admissibility of heavy-tail distributions for mean square bounded oracles.

This construction is new and may be of independent interest.



Chapter 3. Communication-Constrained Optimization over Euclidean Space 78

Theorem 3.5.3. Consider a gain-shape quantizer Q satisfying Structural Assumptions

1-3. Suppose that for X = {x : ‖x‖2 ≤ D/2} we can find an optimization protocol π which,

using at most T iterations, achieves supf,O∈O E(f,O, π,Q) ≤ 3DB√
T
. Then, we can find a

universal constant c such that the overall precision r of the quantizer must satisfy

r ≥ c(d+ log T ).

Theorem 3.5.4. Consider a gain-shape quantizer Q satisfying Structural Assumptions 1-3.

Suppose that the number of bits rg used by the gain quantizer are fixed independently of T .

Then, for X = {x : ‖x‖2 ≤ D/2}, there exists (f,O) ∈ O such that for any optimization

protocol π using at most T iterations, we must have

E(f,O, π,Q) ≥ c(rg)DB
T 1/3 ,

where c(rg) is a constant depending only on the number of bits used by the gain quantizer

(but not on T ).

The proofs of Theorems 3.5.3 and 3.5.4 are technical and long; we defer them to Section

3.6.6.

Remark 18. Thus, from Theorem 3.5.3, for any optimization algorithm to achieve the

error of O(1/
√
T ) after T iterations, when used a quantizer satisfying the Structural

Assumptions 1-3, the precision of the quantizer at every iteration must scale at least as

roughly log T . Conversely, from Theorem 3.5.4, if we use a quantizer with precision fixed

independently of T , then any optimization algorithm used with this quantizer must have

error at least Ω(1/T 1/3).

3.5.2 A-RATQ in the high-precision regime

Instead of quantizing the gain uniformly, we propose to use an adaptive quantizer termed

Adaptive Geometric Uniform Quantizer (AGUQ) for gain. AGUQ operates similar to

the one-dimensional ATUQ, except the possible dynamic-ranges Mg,0, . . . ,Mg,h grow
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geometrically (and not using tetra-iterations of ATUQ) as follows:

M2
g,j = B2 · ajg, 0 ≤ j ≤ hg − 1. (3.17)

Specifically, for a given gain G ≥ 0, AGUQ first identifies the smallest j such that G ≤Mg,j

and then represents G using the one-dimensional version of CUQ with a dynamic range

[0,Mg,j] and kg uniform levels

BMg,j ,k(`) := ` · Mg,j

kg − 1 , ∀ ` ∈ {0, . . . , k − 1}.

As in ATUQ, if G > Mhg−1, the overflow ∅ symbol is used and the decoder simply outputs

0. The overall procedure is the similar to Algorithms (3.6) and (3.7) for s = 1, h = hg,

and Mj = Mg,j, 0 ≤ j ≤ hg − 1; the only changes is that now we restrict to nonnegative

interval [0,Mg,j] for the one-dimensional version of CUQ with uniform levels kg.

The following result characterizes the performance of one-dimensional quantizer AGUQ;

it is the only component missing in the analysis of A-RATQ.

Lemma 3.5.5. Let Qa be the quantizer AGUQ described above, with hg ≥ 2. Then,

αm
2(Qa;B, 1) ≤ B

√√√√ 1
4(kg − 1)2 + ag(hg − 1)

4(kg − 1)2 + 1,

βm
2(Qa;B, 1) ≤ sup

Y≥0 a.s. :E[Y 2]≤B2
E
[∣∣∣∣∣E [Qa(Y )− Y |Y ]

∣∣∣∣∣
]
≤ B2

Mg,hg−1
.

Proof of this result, too, is deferred to Section 3.6.4. Note that we have derived a bound

for a quantity that is slightly larger than the bias of Qa, since we want to use this result

along with Theorem 3.5.2.

Thus, our overall quantizer termed the adaptive-RATQ (A-RATQ) is given by

Q(Y ) := Qa(‖Y ‖2) ·Qat,R(Y/‖Y ‖2),

where Qa denotes the one dimensional AGUQ and Qat,R denotes the d-dimensional RATQ.

Note that we use independent randomness for Qa(‖Y ‖2) and Qat,R(Y/‖Y ‖2), rendering
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them conditionally independent given Y .

The parameters s, k for RATQ and ag, kg for AGUQ are yet to be set. We first present

a result which holds for all choices of these parameters.

Theorem 3.5.6 (Performance of A-RATQ). For Q set to A-RATQ with parameters set

as in (3.14), (3.17), we have

αm
2(Q;B, d) ≤ B

√√√√ 1
4(kg − 1)2 + ag(hg − 1)

4(kg − 1)2 + 1 ·
√

9 + 3 ln s
(k − 1)2 + 1,

βm
2(Q;B, d) ≤ B2

Mg,hg−1
.

Proof.

The worst-case second moment of A-RATQ: By Theorem 3.5.2 we have

αm
2(Q;B, d) ≤ αm

2(Qa;B, 1) · α2(Qat,R; 1, d)

≤ αm
2(Qa;B, 1) ·

√
9 + 3 ln s
(k − 1)2 + 1

≤ B

√√√√ 1
4(kg − 1)2 + ag(hg − 1)

4(kg − 1)2 + 1 ·
√

9 + 3 ln s
(k − 1)2 + 1,

where the second inequality used Theorem 3.4.2 with B = 1, and the third follows by

Lemma 3.5.5.

The worst-case bias of A-RATQ: With parameters of RATQ set as in (3.14), we

have that

E [Qat,R(y)] = y, ∀y s.t ‖y‖2
2 ≤ 1.

Therefore, by Theorem 3.5.2 it follows that

βm
2(Q;B, d) ≤ sup

Y :E[‖Y ‖22]≤B2
E
[∣∣∣∣∣E [Qa(‖Y ‖2)− ‖Y ‖2|Y ]

∣∣∣∣∣
]
≤ B2

Mg,hg−1
,

where the second inequality follows from Lemma 3.5.5.
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Note that RATQ yields an unbiased estimator; the bias in A-RATQ arises from AGUQ

since the gain is not bounded. Further, AGUQ uses a precision of dlog hge+ dlog(kg + 1)e

bits, and therefore, the overall precision of A-RATQ is dlog hge+dlog(kg + 1)e+dd/se dlog he+

d dlog(k + 1)e bits.

In the high-precision regime, we set

ag = 2, log hg =
⌈
log(1 + 1

2 log T )
⌉
,

log(kg + 1) =
⌈
log

(
2 + 1

2
√

log T + 1
)⌉
. (3.18)

Corollary 3.5.7. Denote by Q the quantizer A-RATQ with parameters set as in (3.14), (3.10),

and (3.18). Then, the overall precision r used by Q is less than

d(1 + ∆1) + ∆2 +
⌈
log

(
2 +

√
log T + 1

)⌉
,

where ∆1 =
⌈
log

(
2 +
√

9 + 3 ln ∆2
)⌉

and ∆2 = dlog(1 + ln∗(d/3))e, the same as Corol-

lary 3.4.3. Furthermore, the optimization protocol π given in algorithm 3.1 satisfies

sup(f,O)∈O E(f,O, π,Q) ≤ 3DB/
√
T .

Proof. The proof is similar to the proof of Corollary 3.4.3. The first statement follows by

simply upper bounding the precision of the fixed-length code for A-RATQ with parameters

as in the statement. The second statement follows by bounding sup(f,O)∈O E(f,O, π,Q)

using Theorem 3.3.2, using the upper bounds for α and β given in Theorem 3.5.6, and

finally substituting the parameters.

Remark 19. The precision used in Corollary 3.5.7 matches the lower bound in Corollary 3.4.1

upto an additive factor of log log T (ignoring the mild factor of log log log ln∗(d/3)), which is

much lower than the log T lower bound we established for uniform gain quantizers. Hence,

the precision requirement of A-RATQ in the high-precision regime is considerably smaller

than the precision requirement of uniform gain quantizers established in Theorem 3.5.3

for log T � d(1 + ∆1), while remaining roughly the same for log T = O(d(1 + ∆1)).
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3.5.3 A-RATQ in the low-precision regime

In order to operate with a fixed precision r, we combine A-RATQ with RCS. We simply

combine RCS with RATQ as in Section 3.4.3 to limit the precision and use AGUQ as the

gain quantizer. Note that we use independent randomness in our gain quantizer Qa(‖Y ‖2)

and our shape quantizer Q̃(Y/‖Y ‖2), rendering them conditionally independent given Y .

We have the following theorem characterizing α and β for this quantizer.

Theorem 3.5.8. Let Q(Y ) = Qa(‖Y ‖) · Q̃(Y/‖Y ‖2), where Q̃ is the composition of RCS

and RATQ described in Theorem 5.5.3 with parameters m, m0, and h of RATQ as in

(3.14) and Qa is AGUQ. Then,

αm
2(Q;B, d) ≤ B

√√√√ 1
4(kg − 1)2 + ag(hg − 1)

4(kg − 1)2 + 1 · 1
√
µ

√
9 + 3 ln s
(k − 1)2 + 1,

βm
2(Q;B, d) ≤ B2

Mg,hg−1
.

Proof.

The worst-case second moment: Starting by applying Theorem 3.5.2, we have

αm
2(Q;B, d) ≤ αm

2(Qa;B, 1) · α2(Q̃; 1, d)

≤ αm
2(Qa;B, 1) · 1

√
µ
α2(Qat,R; 1, d)

≤ B

√√√√ 1
4(kg − 1)2 + ag(hg − 1)

4(kg − 1)2 + 1 · 1
√
µ

√
9 + 3 ln s
(k − 1)2 + 1,

where the second inequality follows by Theorem 5.5.3 and the third follows by Theorem 3.4.2

and Lemma 3.5.5.

The worst-case bias: With parameters of RATQ set as in (3.14), we have that

E
[
Q̃(y)

]
= y, ∀y s.t ‖y‖2

2 ≤ 1.



Chapter 3. Communication-Constrained Optimization over Euclidean Space 83

Therefore, by Theorem 3.5.2 we get

βm
2(Q;B, d) ≤ sup

Y :E[‖Y ‖22]≤B2
E
[∣∣∣∣∣E [Qa(‖Y ‖2)− ‖Y ‖2|Y ]

∣∣∣∣∣
]

≤ B2

Mg,hg−1
,

where the second inequality follows from Lemma 3.5.5.

We divide the total precision r into rg and rs bits: rg to quantize the gain, rs to

quantize the subsampled shape vector. We set

s, k, and µd as in (3.13), with rs replacing r,

log hg = log(kg + 1) = rg
2 , ag = (µT )

1
hg+1 (3.19)

That is, our shape quantizer simply quantizes µd randomly chosen coordinates of the

rotated vector using ATUQ with rs bits, and the remaining bits are used by the gain

quantizer AGUQ. The result below shows the performance of this quantizer.

Corollary 3.5.9. For any r with gain quantizer being assigned rg ≥ 4 bits and shape

quantizer being assigned rs ≥ 3 + dlog(1 + ln∗(d/3))e, let Q be the combination of RCS

and A-RATQ with parameters set as in (3.14), (3.17), (3.19). Then for µT ≥ 1, the

optimization protocol π in Algorithm 3.1 can obtain

sup
(f,O)∈O

E(f,O, π,Q) ≤ O

DB
 d

T min{d, rs
log ln∗(d/3)}

 1
2 ·

2rg/2−1
2rg/2+1

 .

Proof. By using Theorem 3.3.2 to upper bound sup(f,O)∈Om
c,2
E(f,O, π,Q) and then Theo-

rem 3.5.8 to upper-bound α and β, we get

sup
(f,O)∈Om

c,2

E(f,O, π,Q) ≤ D

 1√
µT

√√√√ B2

4(kg − 1)2 + ag(hg − 1)B2

4(kg − 1)2 +B2

√
9 + 3 ln s
(k − 1)2 + 1 + B2

Mg,h−1

 .
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By substituting the parameters as in the statement and using the fact that µT ≥ 1

completes the proof.

Remark 20. Our fixed precision quantizer in Corollary 3.5.9 establishes that using only a

constant number of bits for gain-quantization, we get very close to the lower bound in

Theorem 2.4.4. For instance, given access to a large enough precision r, if we set rg to be

16 bits, we get

sup
(f,O)∈O

E(f,O, π,Q) ≤ O

DB
 d

T min{d, r−16
log ln∗(d/3)}

 1
2 ·

255
257
 .

Here, the ratio of d/(min{d, r−16
log ln∗(d/3)}) is very close to the optimal ratio of d/(min{d, r}),

and the exponent 255/(2 · 257) is close to the optimal exponent 1/2.

Remark 21. We remark that A-RATQ satisfies Assumptions (1) and (2) in Section 3.5.1

but not (3), and breaches the lower bound for uniform gain quantizers established in

Section 3.5.1.

3.5.4 A variable-length quantizer

So far in this thesis, we have restricted our quantizers to be fixed-length. We now present

a variable-length quantizer for mean square bounded oracles which improves over the

convergence rate of Corollary 3.5.9. The quantizer we present is a gain-shape quantizer

that uses RATQ as the shape quantizer but uses a variable-length version of the gain

quantizer called AGUQ+, an update on AGUQ presented in the previous section.

AGUQ+ differs from AGUQ in two crucial aspects: 1) The number of uniform levels of

the uniform quantizer for different dynamic ranges is different. Denote by kg,j the number

of uniform levels corresponding to the range [0,Mg,j ]. We choose kg,j to grow geometrically.

2) AGUQ+ employs entropic compression further to reduce the expected code-length of

the quantized representation. Besides the differences, the quantization in AGUQ+ is the

same as that of AGUQ.

Specifically, AGUQ+ is once again an adaptive quantizer like AGUQ with dynamic
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ranges growing in a goemetric manner, precisely in the same way as in (3.17). For a

given gain G ≥ 0, AGUQ+ first identifies the smallest j such that G ≤ Mg,j and then

represents G using the one-dimensional version of CUQ with a dynamic range [0,Mg,j]

and kg,j uniform levels

BMg,j
(`) := ` · Mg,j

kg,j − 1 , ∀ ` ∈ {0, . . . , kg,j − 1}.

As in AGUQ, if G > Mg,hg−1, the overflow ∅ symbol is used and the decoder simply outputs

0.

Note that since we are quantizing unbounded random variables, it is difficult to avoid

bias. Nevertheless, we will make the effect of the bias negligible. Specifically, for the

application of communication-constrained optimization of convex functions, it will be

desirable to have a bias of at the most 1/
√
T . To achieve this, we set

ag = 2, hg = 1 + 1
2 log T, kg,j + 1 = 2j+1. (3.20)

We now describe the variable length coding procedure. The variable-length bit string itself

is a concatenation of two separate bit strings. The first string represents the non-uniform

level j in {0, · · · , hg − 1} using the first hg symbols of the Huffman code for geometric

distribution with parameter 1/2. The second string uses a fixed-length code of kg,j bits.

We will show that the total number of bits used for both the strings would be O(1) in

expectation.

Remark 22 (Entropic compression in AGUQ+). AGUQ+ improves over vanilla AGUQ by

exploiting that the probability of a larger dynamic range being chosen decays exponentially

with the dynamic range level j. For concreteness, since E [Y 2] ≤ B2, we have by Markov’s

inequality P (|Y | > Mg,j−1) ≤ B2/M2
g,j−1 = a−jg = 2−j+1. This probability bound allows us

to use a code similar to that of Huffman code for geometric distribution and only have a

constant code-length.

The following result characterizes the performance of one-dimensional quantizer

AGUQ+.
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Lemma 3.5.10. Let Qa+ be the quantizer AGUQ+ described above with parameters set

as in (3.17) and (3.20). Then, for Y such that E [Y 2] ≤ B2, Qa+(Y ) can be represented

using at the most O(1) bits of precision in expectation,

αm
2(Qa+ ;B, 1) ≤ O (1) , and

βm
2(Qa+ ;B, 1) ≤ sup

Y≥0 a.s. :E[Y 2]≤B2
E
[∣∣∣∣∣E [Qa(Y )− Y |Y ]

∣∣∣∣∣
]
≤ O

(
B√
T

)
.

The proof is deferred to Section 3.6.5

Remark 23. Thus employing a gain-shape quantizer where the gain is quantized by AGUQ+

and the shape is quantized by the subsampled version of RATQ along with PSGD improves

over the convergence guarantees of Corollary 3.5.9, and essentially has the same order

of convergence guarantees as that in Corollary 3.4.5. That is, this particular gain-shape

quantizer along with PSGD achieves roughly the convergence rate of O
(
DB√
T
· d
r

)
, which is

the same as that in lower-bound for communication constrained optimization of convex

and `2 lipschitz functions, Omc,2, as stated in Theorem 2.4.4. From Remark 7, the lower

bound in Theorem 2.4.4 holds for variable length quantizers, too, provided the gradient

processing is done in a nonadaptive manner. Thus employing a gain-shape quantizer where

the gain is quantized by AGUQ+ and the shape is quantized by the subsampled version of

RATQ along with PSGD is optimal for communication-constrained optimization of Omc,2
when nonadaptive, variable-length quantizers are allowed.

3.6 Main proofs

3.6.1 Proof of Theorem 3.3.2

We proceed as in the standard proof of convergence (see, for instance, [15]): Denoting by

ΓX (x) the projection of x on the set X (in the Euclidean norm), the error at time t can

be bounded as

‖xt − x∗‖2
2 = ‖ΓX

(
xt−1 − ηQ(ĝ(xt−1))

)
− x∗‖2

2
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≤ ‖
(
xt−1 − ηQ(ĝ(xt−1))

)
− x∗‖2

2

= ‖xt−1 − x∗‖2
2 + ‖ηQ(ĝ(xt−1))‖2

2 − 2η(xt−1 − x∗)TQ(ĝ(xt−1))

= ‖xt−1 − x∗‖2
2 + ‖ηQ(ĝ(xt−1))‖2

2 − 2η(xt−1 − x∗)T
(
Q(ĝ(xt−1))− ĝ(xt−1)

)
− 2η(xt−1 − x∗)T ĝ(xt−1),

where the first inequality is a well known property of the projection operator Γ (see, for

instance, Lemma 3.1, [15]). By rearranging the terms, we have

2η(xt−1 − x∗)T ĝ(xt−1) ≤ ‖xt−1 − x∗‖2
2 − ‖xt − x∗‖2

2 + ‖ηQ(ĝ(xt−1))‖2
2 (3.21)

− 2η(xt−1 − x∗)T (Q(ĝ(xt−1))− ĝ(xt−1)) . (3.22)

Also, since E [ĝ(xt−1)|xt−1] is a subgradient at xt−1 for the convex function f , upon taking

expectation over the randomness in the subgradient estimates as well as the quantizer

output we get

E [f(xt−1)− f(x∗)] ≤ E
[
(xt−1 − x∗)TE [ĝ(xt−1)|xt−1]

]
, (3.23)

which with the previous bound yields

2ηE [f(xt−1)− f(x∗)] ≤ E
[
‖xt−1 − x∗‖2

2

]
− E

[
‖xt − x∗‖2

2

]
+ η2E

[
‖Q(ĝ(xt−1))‖2

2

]
− 2ηE

[
(xt−1 − x∗)T

(
Q(ĝ(xt−1))− ĝ(xt−1)

)]
.

Next, by the Cauchy-Schwarz inequality and the assumption in (1), the third term on the

right-side above can be bounded further to obtain

2ηE [f(xt−1)− f(x∗)] ≤ E
[
‖xt−1 − x∗‖2

2

]
− E

[
‖xt − x∗‖2

2

]
+ η2E

[
‖Q(ĝ(xt−1))‖2

2

]
+ 2η ·D · E [‖E [Q(ĝ(xt−1))− ĝ(xt−1)|xt−1] ‖2] .
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Finally, we note that, by the definition of α and β, for L2-bounded oracles we have

E
[
‖Q(ĝ(xt−1))‖2

2

]
≤ αm

2(Q)2,

‖E [Q(ĝ(xt−1))− ĝ(xt−1)|xt−1] ‖2 ≤ βm
2(Q),

which gives

2ηE [f(xt−1)− f(x∗)] ≤ E
[
‖xt−1 − x∗‖2

2

]
− E

[
‖xt − x∗‖2

2

]
+ η2αm

2(Q)2 + 2ηDβm
2(Q).

Therefore, by summing from t = 2 to T + 1, dividing by T , and using assumption that

the domain X has diameter at the most D, we have

2ηE [f(x̄T )− f(x∗)] ≤ D2

T
+ η2αm

2(Q)2 + 2ηDβm
2(Q).

The first statement of Theorem 3.3.2 follows upon dividing by η and setting the value

of η as in the statement. The second statement holds in a similar manner by replacing α

and β with α2 and β2, respectively.

3.6.2 Proof of Theorem 3.3.3

Note that since the gradient descent step remains the same, (3.21) still holds. Except now,

instead of (3.23), we have a stronger inequality

E [f(xt−1)− f(x∗)] ≤ E
[
(xt−1 − x∗)TE [ĝ(xt−1)|xt−1]

]
− γ

2‖xt−1 − x∗‖2
2, (3.24)

Combining (3.21) and (3.24), and then using the definition of α, β as in the previous proof,

we get

2ηt−1E [f(xt−1)− f(x∗)] ≤ E
[
‖xt−1 − x∗‖2

2

]
− E

[
‖xt − x∗‖2

2

]
+ η2

t−1α2(Q)2 + 2ηt−1Dβ2(Q)

− γ

2‖xt−1 − x∗‖2
2.
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Then multiplying by (t− 1)/2ηt−1, we get

(t− 1)E [f(xt−1)− f(x∗)] ≤ (t− 1)ηt−1

2 α2(Q)2 +
(
t− 1
2ηt−1

− (t− 1)γ
2

)
E
[
‖xt−1 − x∗‖2

2

]
− t− 1

2ηt−1
E
[
‖xt − x∗‖2

2

]
+ (t− 1)Dβ2(Q).

Substituting for ηt−1 as in the theorem statement, summing the resultant inequality

from t = 1 to T , and then applying Jensen’s inequality completes the proof.

3.6.3 Proof of Theorem 3.4.2

Step 1: Analysis of CUQ. We first prove a result for CUQ (with a dynamic range of

[−M,M ]) which will bound the expected value of

∑
i∈[d]

(
Qu(Y )(i)− Y (i)

)2
1{|Y (i)|≤M},

namely the mean square error when there is no overflow. This will be useful in the analysis

of RATQ, too.

Lemma 3.6.1. For an Rd-valued random variable Y and Qu denoting the quantizer CUQ

with parameters M (with dynamic range [−M,M ]) and k, let Qu(Y ) be the quantized value

of Y . Then,

E

∑
i∈[d]

(
Qu(Y )(i)− Y (i)

)2
1{|Y (i)|≤M} | Y

 ≤ dM2

(k − 1)2

1
d

∑
j∈[d]

1{|Y (j)|≤M}

 .
The proof is relatively straightforward with the calculations similar to [88, Theorem 2]; it

is deferred to Section 3.7.1.

Also, the quantizer AGUQ in Section 3.5.2 uses the one-dimensional CUQ with dynamic

range [0,M ] as a subroutine. The uniform levels for this variant of CUQ are given by

BM,k(`) = ` · M

k − 1 ,∀` ∈ [k − 1].
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We have the following lemma for this variant of CUQ.

Lemma 3.6.2. For an R-valued random variable Y which is almost surely nonnegative

and the quantizer Qu with dynamic range [0,M ] and parameter k, let Qu(Y ) denote the

quantized value of Y . Then,

E
[(
Qu(Y )− Y

)2
1{|Y |≤M} | Y

]
≤ M2

4(k − 1)2

(
1{|Y |≤M}

)
.

The proof is very similar to the proof of Lemma 3.6.1 and is deferred to Section 3.7.1.

Step 2: Mean square error for adaptive quantizers. The quantizers RATQ and

A-RATQ use ATUQ as subroutine; in addition, A-RATQ uses AGUQ for gain quantization.

Thus, in order to analyze RATQ and A-RATQ, we need to analyze ATUQ and AGUQ

first.

In this step we provide a general bound on the mean square error of adaptive quantizers.

We capture the performances of ATUQ and AGUQ in two separate results below.

Lemma 3.6.3. For an Rd-valued random variable Y and Q denoting the quantizer ATUQ

with dynamic-range parameters Mjs, we have

E

∑
i∈[d]

(
Q(Y )(i)− Y (i)

)2
1{|Y (i)|≤Mh−1}

 ≤ d

(k − 1)2

m+m0 +
h−1∑
j=1

M2
j P (‖Y ‖∞ > Mj−1)

 .
Proof. Consider the events Ajs corresponding to different levels used by the adaptive

quantizer of the norm, defined as follows:

A0 := {‖Y ‖∞ ≤ m},

Aj := {Mj−1 < ‖Y ‖∞ ≤Mj}, ∀j ∈ [h− 2],

Ah−1 := {Mh−2 < ‖Y ‖∞}.
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By construction, ∑h−1
j=0 1Aj = 1 a.s.. Therefore, we have

E

∑
i∈[d]

(
Q(Y )(i)− Y (i)

)2
1{|Y (i)|≤Mh−1}

 = E
[
‖Q(Y )− Y ‖2

21A0

]
+

h−2∑
j=1

E
[
‖Q(Y )− Y ‖2

21Aj

]

+ E

∑
i∈[d]

(
Qu(Y )(i)− Y (i)

)2
1{|Y (i)|≤Mh−1}1Ah−1

 .
Note that 1A0 implies that we are using a k-level uniform quantization with a dynamic

range of [−m,m]. Therefore, this term can be bounded by Lemma 3.6.1 as follows:

E
[
‖Q(Y )− Y ‖2

21A0

]
≤ dm

(k − 1)2 .

Under the event Aj with j ∈ [h− 1], we use a k-level uniform quantization with a dynamic

range of [−Mj,Mj]. Therefore, by Lemma 3.6.1, we have

E
[
‖Q(Y )− Y ‖2

21Aj

]
≤

dM2
j

(k − 1)2E
[
1Aj

]
≤

dM2
j

(k − 1)2P (‖Y ‖∞ > Mj−1) .

Note that the proof above does note use specific form of Mj’s and therefore applies as

it is for the one-dimensional AGUQ gain quantizer used in A-RATQ; the only change is

the fact that instead of using Lemma 3.6.1 for uniform quantization we use Lemma 3.6.2.

This leads to the following lemma, which will be useful later in the analysis of A-RATQ.

Lemma 3.6.4. For an R-valued random variable Y which is almost surely nonnegative

and Q denoting the quantizer AGUQ with dynamic-range parameters Mg,js, we have

E
[
(Q(Y )− Y )2

1{|Y |≤Mg,h−1}
]
≤ 1

4(k − 1)2

B2 +
h−1∑
j=1

M2
g,jP (|Y | > Mg,j−1)

 .
The proof is similar to that of Lemma 3.6.3 and is omitted.
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Step 3: Mean square error of ATUQ for a subgaussian input vector. In our

analysis, we need to evaluate the performance of ATUQ for subgaussian input vectors.

Definition 3.6.5 (cf. [13]). A centered random variable X is said to be subgaussian with

variance factor v if for all λ in R, we have

lnE
[
eλX

]
≤ λ2v

2 .

The following well-known fact (cf. [13, Chapter 2]) will be used throughout.

Lemma 3.6.6. For a centered subgaussian random variable X with variance factor v the

P (|X| > x) ≤ 2e−x2/2v, ∀x > 0,

E
[
X2
]
≤ 4v, E

[
X4
]
≤ 32v2.

Next, consider the quantizer Qat,I which is similar to RATQ but skips the rotation

step. Specifically, Qat,I is obtained by replacing the random matrix R in the encoder and

decoder of RATQ (given in Algorithms 3.2 and 3.3, respectively) by the identity matrix I.

Symbolically, the quantizer Qat,I can be described as follows for the d-dimensional input

vector Y

Qat,I(Y ) = [Qat(Y1)T , · · · , Qat(Ydd/se)T ], (3.25)

where Qat is the quantizer ATUQ and Yi is the ith subvector of Y . Recall that the ith

subvector Yi comprises the coordinates {(i − 1)s + 1, · · · ,min{is, d}}, for all i ∈ [d/s].

Also, recall that the dimension of all the sub vectors except the last one is s, with the last

one having dimension d− sbd/sc.

Notice that like RATQ, Qat,I has parameters k, h, s, m, and m0 which need to be set.

We set the parameters m and m0 to be 3v and 2v ln s, respectively, and prove a general

lemma in terms of the other parameters of Qat,I for a subgaussian input vector.

Lemma 3.6.7. Consider Y = [Y (1), . . . , Y (d))]T , where for all i in [d], Y (i) is a centered

subgaussian random variable with variance factor v. Let Q denote the quantizer Qat,I with
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parameters m and m0 set to 3v and 2v ln s, respectively. Then, for every s, k, h ∈ N, we

have
1
d
· E

∑
i∈[d]

(Y (i)−Q(Y )(i))2
1{|Y (i)|≤Mh−1}

 ≤ v · 9 + 3 ln s
(k − 1)2 .

Proof. Since

E

∑
i∈[d]

(Y (i)−Q(Y )(i))2
1{|Y (i)|≤Mh−1}

 =
d dse∑
i=1

min{is,d}∑
j=(i−1)s+1

E
[
(Qat(Y )(j)− Y (j))2

1{|Y (j)|≤Mh−1}
]
,

by using Lemma 3.6.3 for each of the dd/se subvectors, we get

E

∑
i∈[d]

(Y (i)−Q(Y )(i))2
1{|Y (i)|≤Mh−1}


≤ s

(k − 1)2

b d
s
c∑

i∈1

m+m0 +
∑

j∈[h−1]
M2

j P (‖Yi,s‖∞ > Mj−1)


+
(d− sbd

s
c)

(k − 1)2

m+m0 +
∑

j∈[h−1]
M2

j P
(
‖Ydd/se,s‖∞ > Mj−1

) .
For all i ∈ bd/sc, it follows from the union bound that

P (‖Y1,s‖∞ > Mj−1) ≤ 2se
−M2

j−1
2v .

Also, since d− sbd/sc ≤ s, we have

P
(
‖Ydd/se,s‖∞ > Mj−1

)
≤ 2se

−M2
j−1

2v .

Using these tail bounds in the previous inequality, we get

E

∑
i∈[d]

(Y (i)−Q(Y )(i))2
1{|Y (i)|≤Mh−1}

 ≤ d

(k − 1)2

m+m0 + 2s
∑

j∈[h−1]
M2

j e
−M2

j−1
2v

 .
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Setting m = 3v and m0 = 2v, the summation on the right-side is bounded further as

2s
3v
s

h−1∑
j=1

(e∗j) · e−1.5e∗(j−1)

+ 2s
2v
s

h−1∑
j=1

e−1.5e∗(j−1)


= 6v

h−1∑
j=1

e−0.5e∗(j−1) + 4v ln s
h−1∑
j=1

e−1.5e∗(j−1)

≤ 6v
∞∑
j=1

e−0.5e∗(j−1) + 4v ln s
h−1∑
j=1

e−1.5e∗(j−1)

≤ 6v + v ln s,

where we use a bound of 1 for ∑∞j=1 e
−0.5e∗(j−1) , whose validity can be seen as follows11

∞∑
j=1

e−0.5e∗(j−1) = e−0.5 + e−0.5e + e−0.5ee +
∞∑
j=3

e−0.5e∗(j)

≤ e−0.5 + e−0.5e + e−0.5ee +
∞∑
j=3

e−0.5jee

≤ e−0.5 + e−0.5e + e−0.5ee + 1
eee − 1

≤ 1,

and 1/4 for ∑h−1
j=1 e

−1.5e∗(j−1) , whose validity can be seen as follows

∞∑
j=1

e−1.5e∗(j−1) = e−1.5 + e−1.5e + e−1.5ee +
∞∑
j=3

e−1.5e∗(j)

≤ e−1.5 + e−1.5e + e−1.5ee +
∞∑
j=3

e−1.5jee

≤ e−1.5 + e−1.5e + e−1.5ee + 1
e3ee − 1/e1.5ee

≤ 0.2401.

11In fact, these bounds motivate the use of tetration as our choice for Mjs.
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Therefore, we obtain

1
d
· E

∑
i∈[d]

(Y (i)−Q(Y )(i))2
1|Y (i)|≤Mh−1

 ≤ v · 9 + 3 ln s
(k − 1)2 .

We remark that calculations present in this lemma are at the heart of the analysis of

RATQ. Also, this lemma will be useful for other applications discussed in Chapters 5 and

6.

Step 4: Completing the proof. Recall that the random matrix R defined in (3.6) is

used at the encoder of RATQ to randomly rotate the input vector. We observe that the

rotated vector has subgaussian entries.

Lemma 3.6.8. For an Rd-valued random variable Y such that ‖Y ‖2
2 ≤ B2 a.s., all

coordinates of the rotated vector RY are centered subgaussian random variables with a

variance factor of B2/d, whereby

P (|RY (j)| ≥M) ≤ 2e−dM2/2B2
, ∀ j ∈ [d],

where RY (j) is the jth coordinate of the rotated vector.

The proof uses similar calculations as [7] and [88]; it is deferred to Section 3.7.2.

Intuitively, the Lemma 3.6.8 highlights the fact that overall energy ‖Y ‖2
2 in the input

vector Y is divided equally among all the coordinates after random rotation.

The worst-case second moment of RATQ. Note that by the description of RATQ

which will be denoted by Qat,R(RY ), we have that

Qat,R(Y ) = R−1Qat,I(RY ),
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where Qat,I is as defined in (3.25). Thus,

Qat,I(RY ) = [Qat(RY1,s)T , · · · , Qat(RYdd/se,s)T ]T , (3.26)

where the subvector RYi,s is given by

RYi,s = [RY ((i− 1)s+ 1), · · · , RY (min{is, d})]T .

To compute α(Qat,R(Y )), we will first compute the second moment for the output of

RATQ. Specifically, using the fact R is a unitary transform, we obtain

E
[
‖Qat,R(Y )‖2

2

]
= E

[
‖R−1Qat,I(RY )‖2

2

]
= E

[
‖Qat,I(RY )‖2

2

]
=
∑
j∈[d]

E
[
(Qat,I(RY )(j))2

]

=
d dse∑
i=1

min{is,d}∑
j=(i−1)s+1

E
[
(Qat,I(RY )(j))2

]
.

We now observe that for our choice of m and h for RATQ given by (3.8), we have

M2
h−1 ≥ m(e∗log∗e(d/3)) = (3B2/d).(d/3) = B2.

Using this observation and noting that R is a unitary matrix, we have that

1{‖RY ‖2≤Mh−1} = 1 a.s..

Also, noting that |RY (j)| ≤ ‖RY ‖2 = ‖Y ‖2 = B a.s., for all j ∈ [d], we get

1{|RY (j)|≤Mh−1} = 1 a.s.,∀j ∈ [d]. (3.27)
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Proceeding with these observations, we get

E
[
‖Qat,R(Y )‖2

2

]
≤
d dse∑
i=1

min{is,d}∑
j=(i−1)s+1

E
[
(Qat,I(RY )(j))2

1{|RY (j)|≤Mh−1}
]

=
d dse∑
i=1

min{is,d}∑
j=(i−1)s+1

E
[
(Qat,I(RY )(j)−RY (j) +RY (j))2

1{|RY (j)|≤Mh−1}
]

≤
d dse∑
i=1

min{is,d}∑
j=(i−1)s+1

E
[(

(Qat,I(RY )(j)−RY (j))2 +RY (j)2
)
1{|RY (j)|≤Mh−1}

]
,

where the previous inequality uses the fact that, under the event {|RY (j)| ≤ Mh−1},

Qat,I(RY )(j) is an unbiased estimate of RY (j). Namely,

E
[
Qat,I(RY )(j)1{|RY (j)|≤Mh−1} | R, Y

]
= E

[
RY (j)1{|RY (j)|≤Mh−1} | R, Y

]
.

Therefore, noting that R is a unitary matrix, we have

E
[
‖Qat,R(Y )‖2

2

]
≤ E

∑
j∈[d]

(RY (i)−Qat,I(RY )(j))2
1{|RY (j)|≤Mh−1}

+ E
[
‖Y ‖2

2

]
.

To bound the first term on the right-side we have the following lemma.

Lemma 3.6.9. For an Rd-valued random variable Y such that ‖Y ‖2
2 ≤ B2 a.s.. Then,

for m and m0 set to be 3B2/d and (2B2/d) ln s, respectively, we have that

E

∑
j∈[d]

(RY (i)−Qat,I(RY )(j))2
1{|RY (j)|≤Mh−1}

 ≤ B2 · 9 + 3 ln s
(k − 1)2 .

Proof. By Lemma 3.6.8 we have that all coordinates RY (j) are centered subgaussian

random variable with variance factor B2/d. Thus, the parameters m and m0 of RATQ set

as in (3.8), and equal 3v and 2v ln s, respectively, where v is the variance factor of each

subgaussian coordinate. The result follows by invoking Lemma 3.6.7.
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Therefore, for any Y such that ‖Y ‖2
2 ≤ B2, we have

E
[
‖Qat,R(Y )‖2

2

]
≤ B2 · 9 + 3 ln s

(k − 1)2 +B2,

whereby

α2(Qat,R) ≤ B

√
9 + 3 ln s
(k − 1)2 + 1.

The worst-case bias of RATQ. By (3.27) we have that the input always remains in

the dynamic-range of the quantizer, resulting in unbiased quantized values. In other words,

β2(Qat,R) = 0.

3.6.4 Proof of Lemma 3.5.5

We first note AGUQ is used to quantize a scalar Y . It follows from the description of the

quantizer that

1{|Y |≤Mg,hg−1}E [Qa(Y )|Y ] = 1{|Y |≤Mg,hg−1}Y, (3.28)

and that12

1{|Y |>Mg,hg−1}Qa(Y ) = 0. (3.29)

The worst-case second moment of AGUQ. Towards evaluating α(Qa) for AGUQ,

for any Y ∈ R we have

E
[
Qa(Y )2

]
= E

[
Qa(Y )2

1{|Y |≤Mg,hg−1}
]

+ E
[
Qa(Y )2

1{|Y |>Mg,h−1}
]

= E
[
(Qa(Y )− Y + Y )2

1{|Y |≤Mg,hg−1}
]

+ E
[
Qa(Y )2

1{|Y |>Mg,hg−1}
]

= E
[
(Qa(Y )− Y )2

1{|Y |≤Mg,hg−1}
]

+ E
[
Y 2

1{|Y |≤Mg,hg−1}
]
,

12Once again, this follows from our convention that the outflow symbol is evaluated to 0.
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where the last identity uses (3.29), and the fact that E
[
(Qa(Y )− Y )Y 1{|Y |≤Mg,h−1}|Y

]
= 0,

which follows from (3.28). From Lemma 3.6.4 it follows that

E
[
(Qa(Y )− Y )2

1{|Y |≤Mg,h−1}
]
≤ 1

4(kg − 1)2

B2 +
h−1∑
j=1

M2
j P (|Y | > Mg,j−1)

 .
By Markov’s inequality we get that for any random variable Y with E [Y 2] ≤ B2, we have

P (|Y | > Mg,j−1) ≤ B2/M2
g,j−1, which further leads to

E
[
(Qa(Y )− Y )2

21{|Y |≤Mg,h−1}
]
≤ B2

4(kg − 1)2 +
hg−1∑
j=1

M2
g,j

4(kg − 1)2
B2

M2
g,j−1

= B2

4(kg − 1)2 + ag(hg − 1)B2

4(kg − 1)2 .

Therefore, we have

E
[
Qa(Y )2

]
≤ B2

4(kg − 1)2 + ag(hg − 1)B2

4(kg − 1)2 + E
[
Y 2

1{|Y |≤Mg,h−1}
]
.

The result follows upon taking the supremum of the left-side over all random variables Y

with E [Y 2] ≤ B2.

The worst-case bias of AGUQ. Towards evaluating β(Qa), we note first using Jensen’s

inequality that

∣∣∣E [Qa(Y )− Y ]
∣∣∣ ≤ E

[∣∣∣E [Qa(Y )− Y |Y ]
∣∣∣] .

Then, for Y with E [Y 2] ≤ B2, using (3.28) and Markov’s inequality, we get

E [|E [Qa(Y )− Y |Y ] |] = E
[
|Y |1{|Y |≥Mg,h−1}

]
≤
√
E [Y 2]P (|Y | ≥Mg,h−1)

≤ B2

Mg,h−1
. (3.30)
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Therefore, for any Y with E [Y 2] ≤ B2, we have

∣∣∣E [Qa(Y )− Y ]
∣∣∣ ≤ sup

Y≥0a.s.:E[Y 2]≤B2
E
[∣∣∣E [Qa(Y )− Y |Y ]

∣∣∣] ≤ B2

Mg,h−1
.

The result follows upon taking the supremum of left-side over all random variables Y with

E [Y 2] ≤ B2.

3.6.5 Proof of Lemma 3.5.10

O(1) expected precision. Recall that the variable-length bit string is a concatenation

of two bit strings: The first bit string represents the dynamic range Mg,j , j ∈ {0, . . . h− 1};

the second-bit string represents the uniform level within that dynamic range.

The first string uses the first h symbols of the Huffman codes corresponding to the

geometric distribution with parameter 1/2. Its code length can be bounded as follows. By

Markov’s inequality, we have P (|Y | > Mg,j−1) ≤ B2/M2
g,j−1 = a−jg = 2−j+1. For a symbol

j ∈ {0, · · · , h− 1} representing the chosen dynamic range, let `(j) denote the length of the

codeword of that symbol. Therefore, the expected codelength E [L] can be upper bounded

as follows.

E [L] ≤
h−1∑
j=0

P (|Y | > Mg,j−1)`(j)

≤ 2
h−1∑
j=0

2−j`(j).

Since we will assign code-lengths `(j) as that assigned to the first h symbols of the

Huffman code corresponding to the geometric distribtution with parameter 1/2, we have

the following.

E [L] ≤ 2
h−1∑
j=0

2−j`(j)

= 4
h−1∑
j=0

2−j−1`(j)

≤ 4(H(Z) + 1),
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where Z is the geometric distribution with parameter 1/2. Above, the final inequality can

be seen by the fact that expected code-length for Huffman codes for a particular pmf is

upper bounded by one plus entropy of that pmf. This bounds the code-length of the first

bit string by a constant.

Coming to the bounding the code-length of the second bit string, the expected code

length of the second string is upper bounded by

h−1∑
j=0

P (|Y | > Mg,j−1) log(kg,j + 1) ≤ 2
h−1∑
j=0

2−j(j + 1) ≤ 12.

Worst-case second moment of AGUQ+. The only change from the worst-case second

moment upper bound calculations in the proof of Lemma 3.5.5 is that the number of

uniform levels for different dynamic ranges is different. The rest of proof remains precisely

the same, and is skipped.

Bias of AGUQ+. The proof is identical to one in Lemma 3.5.5, and is skipped.

3.6.6 Proof of Theorems 3.5.3 and 3.5.4

Before we proceed with our lower bounds, we will set up some notation. We consider

quantizers of the form

Q(Y ) = Qg(‖Y ‖2)Qs(Y/‖Y ‖2).

Let W (·|y), Wg(·|y), and Ws(·|y), respectively, denote the distribution of the output of

quantizers Q(y), Qg(y), and Qs(y). We prove a general lower bound for a quantizer satisfy-

ing Structural Assumptions 1-3 in Section 3.5.1 in terms of the precision r; Theorems 3.5.3

and 3.5.4 are obtained as corollaries of this general lower bound.

Theorem 3.6.10. Suppose that X contains the set {x ∈ Rd : ‖x‖2 ≤ D/2}. Consider

a gain-shape quantizer Q of precision r satisfying the Assumptions 1-3 in Section 3.5.1.

Then, there exists an oracle (f,O) ∈ O such that for any optimization protocol π using T
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iterations, we have

E(f,O, π,Q) ≥ DB

2
√

2
min

{
1
2r ,

1
4 · 2r/3T 1/3 ,

1
2(2T )1/3

}
.

Proof. Consider the function fα : Rd → R, α ∈ {−1, 1} given by

fα(x) := δ
B√

2
|x(1)− αD/2|, α ∈ {−1, 1}.

Note that the functions f1 and f−1 are convex and depend only on the first coordinate of

x. Further, for x ∈ X , the subgradient of fα is −δαBe1/
√

2, since sign(x(1)− αD/2) =

−sign(α), where e1 is the vector [1, 0, 0, . . . , 0]T . We consider oracles Oα, α ∈ {−1, 1},

that produce noisy subgradient updates with distribution

Pα

(
B√

2
e1

)
= 1− δ2

2 , Pα

(
−B√

2
e1

)
= 1− δ2

2 , Pα
(
− αB√

2δ
e1
)

= δ2.

It is easy to check that the oracle outputs satisfy (2.5) and (3.3) described in Section

3.3.1. That is, the output of Oα is an unbiased estimate of the subgradient of fα, and the

expected Euclidean norm square of the oracle output is bounded by B2.

We now take recourse to the standard reduction of optimization to hypothesis testing:

To estimate the optimal value of f1 and f−1 to an accuracy δ, the optimization protocol

must determine if the oracle outputs are generated by P1 or P−1. However in order to

distinguish between P1 or P−1, the optimization protocol only has access to the quantized

oracle outputs. Specifically, the protocol sees the samples from Q(Y ) at every time step,

where Y has distribution either P1 or P−1.

Denoting by PαW the distribution of the output Q(Y ) when the input Y is generated

from Pα, we have from the standard reduction (see, for instance, [23, Theorem 5.2.4]) that

max
α∈{−1,1}

E(f,O, π,Q) ≥ DB

2
√

2
δ

(
1−

√
T

2 χ
2(P1W,P−1W

)
,

where χ2(P,Q) =
∑
x

(P (x)−Q(x))2/Q(x) denotes the chi-squared divergence between P
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and Q.

Note that Assumption 2 on the structure of the quantizer implies that when M <

B/δ
√

2, the distributions P1W and P−1W are the same. It follows that for every δ <

min{
√
B2/2M2, 1}, the left-side of the previous inequality exceeds (DB/2

√
2)δ, whereby

max
α∈{−1,1}

E(f,O, π,Q) ≥ DB

2
√

2
min

{
B√
2M

, 1
}
. (3.31)

Next, we consider the following modification of the previous construction in the case

when B/
√

2 < m:

Pα

(
B√

2
e1

)
= 1− δ1+y

2 , Pα

(
−B√

2
e1

)
= 1− δ1+y

2 , Pα
(
− αB√

2δy
e1
)

= δ1+y.

for y ∈ [0, 1]. Once again, the oracle outputs satisfy (2.5) and (3.3) described in Section

3.3.1. In this case, the vector Y ∼ Pα has entries with `2 norm at the most B/(
√

2δy). We

set y such that this value is less than m and χ2(P1W,P−1W ) is minimized. Note that if

B/(δy
√

2d) < m, then supp(Qg(‖a‖)) ⊆ {0,m} for all the a’s in the support of P1 or P−1.

For all z 6= 0, z ∈ supp(Q(a)), when a is in the support of P1 or P−1, we have

W
(
z | a

)
= Wg

(
m | ‖a‖2

)
Ws

( z
m
| a

‖a‖2

)
.

Therefore,

P1W (z)− P−1W (z) = δ1+yWg

(
m | B√

2δy
)(

Ws

( z
m
| −e1

)
−Ws

( z
m
| e1

))

P−1W (z) ≥ 1− δ1+y

2 Wg

(
m | B√

2
)
Ws

( z
m
| e1

)
+ 1− δ1+y

2 Wg

(
m | B√

2
)
Ws

( z
m
| −e1

)
.

Using the preceding two inequalities

(P1W (z)− P−1W (z))2

P−1W (z) ≤
δ2+2yWg

(
m | B√

2δy

)2 (
Ws

(
z
m
| e1

)
−Ws

(
z
m
| −e1

))2

1−δ1+y

2 Wg

(
m | B√

2

)
Ws

(
z
m
| e1

)
+ 1−δ1+y

2 Wg

(
m | B√

2

)
Ws

(
z
m
| −e1

)
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≤ 2δ2+2y

1− δ1+y ·
Wg

(
m | B√

2δy

)2 (
Ws

(
z
m
| e1

)
+Ws

(
z
m
| −e1

))
Wg

(
m | B√

2

)
≤ 2δ2+y

1− δ1+y ·Wg

(
m | B√

2δy
)(

Ws

( z
m
| e1

)
+Ws

( z
m
| −e1

))

≤ 2δ2+y

1− δ1+y ·
(
Ws

( z
m
| e1

)
+Ws

( z
m
| −e1

))
,

where the third inequality uses Assumption 3b for the quantizer in Section 3.5.1, i.e., it

uses
Wg

(
m | B√

2δy

)
Wg

(
m | B√

2

) ≤ δ−y.

For z = 0, z ∈ supp(Q(a)), when a is in the support of P1 or P−1, we have

W
(
0 | a

)
= Wg

(
0 | ‖a‖2

)
+Wg

(
m | ‖a‖2

)
Ws

(
0 | a/‖a‖2

)
.

Therefore, by similar calculations for z 6= 0, we have

(P1W (0)− P−1W (0))2

P−1W (0) ≤
δ2+2yWg

(
m | B√

2δy

)2 (
Ws

(
0 | e1

)
+Ws

(
0 | −e1

))2

(1−δ1+y

2 )Wg

(
m | B√

2

)
Ws

(
0 | e1

)
+ (1−δ1+y

2 )Wg

(
m | B√

2

)
Ws

(
0 | −e1

)
≤ 2δ2+y

1− δ1+y

(
Ws

(
0 | e1

)
+Ws

(
0 | −e1

))
.

In conclusion,

χ2(P1W,P−1W ) ≤ 4δ2+y

1− δ1+y .

Now, if δ < 1/2, we have

χ2(P1W,P−1W ) ≤ 8δ2+y.

Upon setting δ = (16T )−1/(2+y), which satisfies δ < 1/2 for all T , we get

max
α∈{−1,1}

E(f,O, π,Q) ≥ DB

2
√

2
δ(1−

√
4Tδ2+y) = DB

4
√

2

( 1
16T

) 1
2+y

. (3.32)
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But we can only set δ to this value if

B√
2
· (16T )

y
2+y < m. (3.33)

Thus, for each y such that (3.33) holds, we get (3.32). Taking the the supremum of RHS

in (3.32) over all y ∈ [0, 1] such that (3.33) holds, we obtain whenever B/
√

2 ≤ m,

max
α∈{−1,1}

E(f,O, π,Q) ≥ DB

2
√

2
·min

1
8

√
m
√

2
BT

,
1

2(2T )1/3

 ,
where we use the following lemma proved in Section 3.7.3.

Lemma 3.6.11. For a, c > 0, and b > 1.

sup
y∈[0,1]:a(b)y/(2+y)<c.

a
(1
b

) 1
2+y

= min
{√

ca

b
,
a

b
1
3

}

Upon combining this bound with (3.31), we obtain

sup
(f,O)∈O

ε(fα, πQO) ≥ DB

2
√

2
max

min
{
cm

M
, 1
}
,min

1
8

√
1
cT
,

1
2(2T )1/3

1{c<1}

 ,
where c = B/(m

√
2). By making cases 1 ≤ c, 1

8(2T )1/3 ≤ c < 1, and c < 1
8(2T )1/3 , and using

the fact that for a, b ≥ 0, max{a, b} ≥ a1/3b2/3 in the second case, we get

sup
(f,O)∈O

ε(fα, πQO) ≥ DB

2
√

2
min

{
1, 1

(M/m) ,
1

4(M/m)1/3T 1/3 ,
1

2(2T )1/3

}
.

By Assumption 3 in Section 3.5.1, we know that M
m
≤ 2r. Therefore,

sup
(f,O)∈O

ε(fα, πQO) ≥ DB

2
√

2
min

{
1
2r ,

1
4(2)r/3T 1/3 ,

1
2(2T )1/3

}
.

Theorem 3.5.4 follows as an immediate corollary; Theorem 3.5.3, too, is obtained by
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noting that

sup
(f,O)∈O

ε(fα, πQO) < 3DB√
T

holds only if
√
T < 2r.

3.7 Remaining proofs for the main results

3.7.1 Analysis of CUQ: Proof of Lemmas 3.6.1 and 3.6.2

Proof of Lemma 3.6.1: Denoting by Bj,` the event
{
Y (j) ∈ [BM,k(`), BM,k(` + 1))

}
,

we get

E

∑
j∈[d]

(
Qu(Y )(j)− Y (j)

)2
1{|Y (j)|≤M} | Y


=
∑
j∈[d]

k−1∑
`=0

E
[(
Qu(Y )(j)− Y (j)

)2
1Bj,` | Y

]
1{|Y (j)|≤M}.

For the term inside the summation on the right-side, we obtain

E
[(
Qu(Y )(j)− Y (j)

)2
1Bj,` | Y

]
=
(

(BM,k(`+ 1)− Y (j))2 Y (j)−BM,k(`)
BM,k(`+ 1)−BM,k(`)

)
1Bj,`

+
(

(BM,k(`)− Y (j))2 BM,k(`+ 1)− Y (j)
BM,k(`+ 1)−BM,k(`)

)
1Bj,`

= (BM,k(`+ 1)− Y (j))(Y (j)−BM,k(`))1Bj,`

≤ 1
4 (BM,k(`+ 1)−BM,k(`))2

= M2

(k − 1)2 , (3.34)

where the inequality uses the GM-AM inequality and the final identity is simply by the

definition of BM,k(`). Upon combining the bounds above, we obtain

E

∑
j∈[d]

(
Qu(Y )(j)− Y (j)

)2
1{|Y (j)|≤M} | Y

 ≤ dM2

(k − 1)2 ·
1
d

∑
j∈[d]

1{|Y (j)|≤M}.
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Proof of Lemma 3.6.2 The proof is the same as the proof of Lemma 3.6.1, except that

we need to set d = 1 and replace the identity used in(3.34) with

BM,k(`+ 1)−BM,k(`) = M

k − 1 .

3.7.2 Proof of Lemma 3.6.8

For the rotation matrix R = (1/
√
d)HD, each entry of RY (j) of the rotated matrix

has the same distribution as (1/
√
d)V TY , where V = [V (1), ..., V (d)]T has independent

Rademacher entries. We will use this observation to bound the moment generating function

of RY (i) conditioned on Y . Towards that end, we have

E
[
eλRY (i) | Y

]
=

d∏
i=1

E
[
eλV (i)Y (i)/

√
d | Y

]

=
d∏
i=1

eλY (i)/
√
d + e−λY (i)/

√
d

2

≤
d∏
i=1

eλ
2Y (i)2/2d

= eλ
2‖Y ‖22/2d,

where the first identity follows from independence of V (i)s and the first inequality follows

by the fact that (ex + e−x)/2 is less than ex2/2, which in turn can be seen from the Taylor

series expansion of these terms. Thus, we have proved the following:

E
[
eλRY (i) | Y

]
≤ eλ

2‖Y ‖22/2d, ∀λ ∈ R,∀i ∈ [d]. (3.35)

Note that ‖Y ‖2
2 can be further bounded by B2, which along with (3.35) leads to

E
[
eλRY (i)

]
≤ eλ

2B2/2d ∀λ ∈ R,∀i ∈ [d].
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Using this inequality and the observation that E [RY (i)] = 0, we note that RY (i) is a

centered subgaussian with a variance parameter B2/d. The second statement of the lemma

trivially follows from Lemma 3.6.6. .

3.7.3 Proof of Lemma 3.6.11

For any y ∈ [0, 1] such that aby/(2+y) < c, we have aby/(2+y) < min
{
c, ab1/3

}
. By multiply-

ing by a/b on both sides and taking square root, we get

a

b
1

2+y
< min

{√
ca

b
,
a

b1/3

}
,

which gives

sup
y∈[0,1]:a(b)y/(2+y)<c.

a

b
1

2+y
≤ min

{√
ca

b
,
a

b1/3

}
.

Making cases ab1/3 ≥ c and ab1/3 < c, we note that the supremum on the left-side equals

the right-side in both the cases.

3.8 Concluding Remarks

In this chapter, we developed quantizers for communication-constrained optimization over

Euclidean spaces. The problem here essentially reduces to minimizing the worst-case `2

norm, α2(Q) or αm
2(Q), of the quantized gradient under the constraint that worst-case `2

bias between the quantized gradient and input gradient, β2(Q) or βm
2(Q), is small and the

output of the quantizer can be represented in r bits. In fact, in the next chapter, we will

see that for designing gradient quantizers for communication-constrained optimization

over `p spaces, we need to solve a similar problem where the `q norms are considered

instead, where q is the Hölder conjugate of p. Since the only knowledge we have of the

input gradient to be quantized is either an almost sure or mean square-bound on the

`2 norm of the gradient, we first preprocess the gradient to have some handle over the

distribution of the gradient coordinates. We do this by randomly rotating the gradient

input since it divides the overall gradient value equally across coordinates. We believe that
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without any more information on gradient distribution, this is a reasonable preprocessing.

We will resort to this idea of random rotation once again in Chapter 5. Another idea we

will pick up from the quantizer design in this chapter is that of adaptive quantization. As

we saw in our achievability proofs, adaptive gradient quantization became crucial to come

up with tight upper bounds. We will see in Chapter 6 that this idea can also be used for

classic information theory problems such as the Gaussian rate-distortion problem.



Chapter 4

Communication-Constrained

Optimization over `p Spaces

4.1 Synopsis

In this chapter, we study communication-constrained optimization for `p lipschitz and

convex function family. For this class of functions, we characterize the minimum precision

to which the oracle output must be quantized to retain the unrestricted convergence rates?

We characterize this precision for every p ≥ 1 by accessing the information theoretic lower

bounds derived in Chapter 2 and by providing quantizers that (almost) achieve these

lower bounds. Our quantizers are new and easy to implement. In particular, our results

are exact for p = 2 and p =∞, showing the minimum precision needed in these settings

are Θ(d) and Θ(log d), respectively. The latter result is surprising since recovering the

gradient vector will require Ω(d) bits.

The results presented in this Chapter are from [67].

4.2 Introduction

In this chapter, we develop new algorithms to match the lower-bounds for communication-

constrained optimization over `p spaces. Specifically, we study communication-constrained

110
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optimization for convex and `p lipschitz function family. We study this problem in the

high-precision regime introduced in Chapter 3. That is, we ask what is the minimum

precision to which the subgradient estimates’ supplied by the oracle must be quantized so

that we can attain the convergence of the classic, unrestricted setting. We derive a lower

bound on this precision using the lower bounds on optimization error derived in Chapter 2.

As our main contribution, we propose simple, efficient subgradient quantization algorithms

which along with appropriate mirror decent algorithms match these lower bounds.

4.2.1 Main Contributions

We show that for p ∈ [1, 2] and p ≥ 2, respectively, roughly d and d2/p log(d1−2/p + 1) bits

are necessary and sufficient for retaining the standard convergence rates. These bounds are

tight upto an O(log d) factor, in general, but are exact for p = 2 and p =∞. Prior work

has only considered the problem for the Euclidean case, and not for general `p geometry.

Note that in the previous Chapter, we show that RATQ along with PSGD requires a

precision of O(d log log log ln∗ d) per iteration to attain the classic convergence rate. In

this chapter we get rid of the nagging log log log ln∗ d factor and establish tight bounds.

We use different quantizers for p ≥ 2 and p ∈ [1, 2]. In the p ≥ 2 range, we use a

quantizer we call SimQ+. SimQ+, in turn, uses multiple repetitions of another quantizer

we call SimQ which expresses a vector as a convex combination of corner points of an

`1 ball. It is SimQ that yields an O(log d) bit quantizer for optimization over `∞. Also,

SimQ+ yields the exact upper bound in the `2 case. In the [1, 2] range, we divide the

vector into two parts with small and large coordinates. We use a uniform quantizer for

the first part and RATQ of Chapter 3 for the second part.

The main observation in our analysis for upper bound is that the role of quantizer in

optimization is not to express the gradient with small error. It suffices to have an unbiased

estimate with appropriately bounded norms.
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4.2.2 Prior Work

A detailed literature review on the quantizer used in communication-constrained optimiza-

tion is presented in Chapter 3. Most of the literature in this area looks at the Euclidean

setting. In the general setting of Information-constrained optimization, convex and `p

Lipschitz family was considered in [29], in a statistical query setup, and [24], in a local

differential privacy setup.

Finally, we remark that while our quantizers are related to the ones used in prior works,

our main contribution is to show that our specific design choices yield optimal precision.

For instance, the quantizers in [33] express the input as a convex combination of a set of

points, similar to SimQ. One of the quantizers in [33] uses a similar set of points as that

of SimQ with a different scaling. However, the quantizers in [33] are designed keeping in

mind other objectives, and they fall short of attaining the optimal precision guarantees of

SimQ and SimQ+. SimQ is also closely related Maurey’s empirical method (see [76], or

[90] for a recent reference), however, the use in gradient quantization is new.

Orgainization

In the next section, we describe the setup and the structure of the schemes we will be

employing. In Section 4.4, we describe the main result of the paper – a characterization

of the minimum precision required to attain classic convergence rate for all p. In Section

4.5 and 4.5.1, we describe our quantizers used to achieve our upper bounds. Finally, we

close with comments on achieving tight upper bounds for the lower bounds in Theorems

2.4.4 and 2.4.4 for all p and for generalizing our results to mean square bounded oracles in

Section 4.7.



Chapter 4. Communication-Constrained Optimization over `p Spaces 113

4.3 Setup and preliminaries

4.3.1 Setup

We consider optimization domains Xp such that `p diameter is less than D. That is,

Xp ∈ Xp(D) := {X ′ : sup
x,y∈X ′

‖x− y‖p ≤ D.} (4.1)

For the domain of optimization Xp, we develop subgradient compression schemes for

function and oracle families given by Oc,p, which are defined in Definition 2.3.3.

We want to study communication-constrained optimization for Oc,p in the high precision

regime. Thus, the fundamental quantity of interest in this work is the minimum precision

to achieve the optimization accuracy of the classic case, denoted by r∗(T, p). Symbolically,

r∗(T, p) := inf{r ∈ N : sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wcom,r) ≤ U(T, p)}, (4.2)

where

U(T, p) := 4c1d
1/2−1/pDB√

T
, ∀p ∈ (2,∞], (4.3)

U(T, p) := 4c1
√

log dDB√
T

, ∀p ∈ [1, 2),

and supX∈Xp(D) E∗(X ,Oc,p, T,Wcom,r) is as defined in Chapter 2. Recall that U(T, p) denotes

the classic convergence rate for the family Oc,p given in Theorem 2.3.5, where the oracle

output is available as it is to the optimization algorithm, without any quantization.

4.3.2 Quantizer performance for finite precision optimization

As described in Section 3.3.2, we restrict to memoryless quantization schemes, where the

same quantizer will be used for each new subgradient vector, without any information

about the previous updates. Also recall from Section 3.3.2, our nonadaptive channel

selection strategy is simply denote by quantizer Q. Further, the optimization error for a

function f and oracle O when employing a first order optimization π and quantizer Q is
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given by

E(f,O, π,Q) = E [f(xT )]− E [f(x∗)] .

We now define αp(Q), which generalizes the definition of α2(Q) in Chapter 3, to

charactize the performance of a quantizer Q for optimization of convex and `p lipschitz

funciton class. Since we restrict to unbiased quantizers, we don’t need to define β.

αp(Q) := sup
Y ∈Rd:‖Y ‖2q≤B2 a.s.

√
E [‖Q(Y )‖2

2], p ∈ (2,∞],

αp(Q) := sup
Y ∈Rd:‖Y ‖2q≤B2 a.s.

√
E
[
‖Q(Y )‖2

q

]
, p ∈ [1, 2].

Note that for all p ≥ 1, the composed oracle QO satisfies assumption (2.5). We employ

the stochastic mirror descent (SMD) algorithm with mirror maps given by Remarks 1

and 2 to use the output from the composed oracle. The algorithm’s description is given in

Algorithm 4.1. Recall that for a mirror map Φ, the Bregman divergence associated with Φ

is defined as

DΦ(x, y) : = Φ(x)− Φ(y)− 〈∇Φ(y), x− y〉.

Require: x0 ∈ X , η ∈ R+, T and access to composed oracle QO

1: for t = 0 to T − 1 do

xt+1 = arg minx∈X (ηt〈x,Q(ĝ(xt))〉) +DΦa(x, xt))

2: Output: 1
T
·∑T

t=1 xt

Algorithm 4.1: Quantized SMD with quantizer Q

Moreover, in view of Remarks 1 and 2 , we have the following convergence guarantees

for first-order stochastic optimization using gradients quantized by Q.

Theorem 4.3.1. Consider a quantizer Q for the gradients. Then the algorithm 4.1 with

mirror maps as in Remarks 1 and 2 and an unbiased quantizer Q performs as follows.
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1. For 2 ≥ p ≥ 1,
c1
√

log dDαp(Q)√
T

≥ sup
(f,O)∈Oc,p

E(f,O, π,Q);

2. For p > 2,
c1d

1/2−1/pDαp(Q)√
T

≥ sup
(f,O)∈Oc,p

E(f,O, π,Q).

Proof. The proof straightaway follows from Theorem 2.3.5 and Remarks 1 and 2. For

completeness, we provide the details below.

First statement simply follows by noting that the bounds in Theorem 3.3.2 hold when

instead of ‖ĝ(x)‖q ≤ B, we have E
[
‖ĝ(x)‖2

q

]
≤ B2 and then using definition of αp. The

second statement simply follows by noting that the bounds in Theorem 3.3.2 are obtained

by employing PSGD. Thus it suffices to only have a bound on E [‖ĝ(x)‖2
2] and then using

the definition of αp.

An interesting insight offered by the result above, which is perhaps simple in hindsight,

is that even when dealing with `p oracles for p > 2, we only need to be concerned about

the expected `2 norm of the quantizers output. This follows from the fact that PSGD is

the optimal optimization algorithm for p > 2 and it’s convergence rate is only concerned

with the `2 norm of the quantizers output. It is this insight that leads to the realization

that SimQ+ is optimal for these settings.

In the rest of the Chapter, we design unbiased, fixed length quantizers which have

αp(·) of the same order as B. Then, using Theorem 4.3.1 the quantized updates give the

same convergence guarantees as that of the classical case, which leads to upper bounds for

r∗(T, p). Further, we using Theorems 2.4.4 and 2.4.5, we derive lower bounds for r∗(T, p)

to prove optimality of our quantizers.

4.4 Main Result: Characterization of r∗(T, p)

The main result of this Chapter is the almost complete characterization of r∗(T, p). We

divide the result into cases p ∈ [1, 2] and p ≥ 2; as mentioned earlier, we use different
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quantizers for these two cases.

Theorem 4.4.1. For stochastic optimization using T accesses to a first-order oracle, the

following bounds for r∗(T, p) hold.

1. For p > 2, we have

d2/p log (2e · d1−2/p + 2e) ≥ r∗(T, p) ≥
(
c0

4c1
· d1/p

)2
∨ 2 log

(
c0

4c1
· d1/2

)
.

2. For 2 ≥ p ≥ 1, we have

d
(⌈

log(2
√

2∆1
1/q + 2)

⌉
+ 3

)
+ ∆2 ≥ r∗(T, p) ≥

(
c0

4c1
√

log d

)2

· d,

where ∆1 =
⌈
log

(
2 +
√

18 + 6 ln ∆2 · d1/2−1/q
)⌉

and ∆2 = dlog(1 + ln∗(d/3))e .

Note that for p > 2 the upper bounds and lower bounds for r∗(T, p) are off by nominal

factor of log(d1−2/p + 1). Also, for p ∈ [1, 2] the bounds are roughly off by O(log d ·

log(log d1/2−1/q)1/q) (ignoring the log∗ d terms).

We present the quantizers achieving these upper bounds, and the proof of the upper

bounds, in the next two sections. For p > 2, we use a quantizer SimQ and its extension

SimQ+, presented in Section 4.5. For p ∈ [1, 2], we use a combination of uniform

quantization and the quantizer RATQ from previous chapter, presented in Section 4.6.

The lower bounds on r∗(T, p) follow immediately by the lower bounds in Theorem 2.4.5

and 2.4.4.

We highlight the most interesting features of the result above in separate remarks

below.

Remark 24 (r∗(T, p) is independent of T ). Theorem 4.4.1 shows that r∗(T, p) is a function

only of p and d, and is independent of T . The number of queries T is a proxy for the desired

optimization accuracy. Therefore, the fact that r∗(T, p) is independent of such a parameter

is interesting. We note, however, that for oracle models with milder assumptions, such as

mean square bounded oracles, this may not hold. In fact, the results of previous chapter

suggest that for mean square bounded oracles r∗(T, 2) is dependent on T .
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Remark 25 (Optimality for p =∞). Our bounds match for p =∞, namely our quantizer

SimQ offers optimal convergence rate with gradient updates at the least precision. A

surprising observation is that this precision is merely O(log d), much smaller than O(d)

bits needed to recover the gradient vector under any reasonable loss function.

Remark 26 (Optimality for p = 2). The high-precision regime for p = 2 was already

considered in the previous chapter. Both [9] and [88] give variable-length quantization

schemes to exactly achieve the lower bound on r∗(T, p), but the worst-case precision can

be order-wise greater than d. The quanitzer RATQ from the previous Chapter was within

a small factor of O(log log log ln∗ d) of this lower bound. In this chapter, we remove this

nagging factor using a different fixed-length quantizer SimQ+.

Remark 27 (Fixed precision). The quantizer RATQ remains optimal upto a factor of

O(
√

log ln∗ d) for the more general problem of characterizing sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wcom,r)

for any precision r less than d bits. In this setting of small precision, the performance of

SimQ+ is much worse.

4.5 Our quantizers for p > 2

We present our quantizer SimQ and its extension SimQ+. The former is seen to be optimal

for p =∞ while the latter for p = 2.

4.5.1 An optimal quantizer for p =∞

Simplex Quantizer (SimQ) Our first quantizer SimQ is described in Algorithms 4.2

and 4.3. For p = ∞, our quantizer’s input vector Y is an unbiased estimate of the

subgradient of the function at the point queried and satisfies ‖Y ‖1 ≤ B. SimQ takes such

a Y as an input and produces an output vector which, too, satisfies both these properties.

The main idea behind SimQ is the fact that any point inside the unit `1 ball can be

represented as a convex combination of at the most 2d points: {ei,−ei : i ∈ [d]}. With

this observation, we can create an unbiased estimate of the input vector using only these
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Require: Input Y ∈ Rd, Parameter B

1: i∗ =


i w.p. |Y (i)|/B

0 w.p. 1− ‖Y ‖1/B

2: if i∗ ∈ [d] then

j∗ = sign(Y (i∗))

3: else

j∗ = 1

4: Output: Qe
SimQ(Y ;B) = i∗ · j∗

Figure 4.2: Encoder Qe
SimQ(Y ;B) for SimQ

Require: Input i′ ∈ {−d,−(d− 1), · · · 0, · · · , d}

1: if i′ 6= 0 then

Z = Bsign(i′)e|i′|
2: else

Z = 0

3: Output: Qd
SimQ(i′;B) = Z

Algorithm 4.3: Decoder Qd
SimQ(i′;B) for SimQ

2d corner points along with the zero vector. Since all of these 2d+ 1 points have a `2 norm

of at the most B, the output vector, too, has a `2 norm of at the most B.

Theorem 4.5.1. Let Q be the quantizer SimQ described in Algorithms 4.2, 4.3. Then, for

Y such that ‖Y ‖1 ≤ B a.s., Q(Y ) can be represented in log(2d+ 1) bits, E [Q(Y )|Y ] = Y ,

and α∞(Q) ≤ B.

Proof. Since i∗ ∈ [d] and j∗ ∈ {−1, 1}, we can represent the output of the encoder of

SimQ using log(2d+ 1) bits. Next, denoting the quantizer SimQ by Q, note that

E [Q(Y )|Y ] =
d∑
i=1

B · sign(Y (i)) · ei ·
|Y (i)|
B

= Y,

namely SimQ is unbiased. To complete the proof, note that ‖Q(Y )‖2
2 ≤ B2 a.s..
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Theorem 4.5.1 along with Theorem 4.3.1 establishes Theorem 4.4.1 for p =∞.

4.5.2 Our Quantizer for p ∈ [2,∞)

For this case, we need to quantize inputs that are bounded in `q norm with q ∈ (1, 2] so

that the quantized output is unbiased and has small expected `2 norm square; we will use

SimQ+ to do this.

SimQ+ The quantizer SimQ+ outputs the average of k independent repetitions of the

SimQ quantizer for a given input vector. The input vectors Y satisfy ‖Y ‖1 ≤ Bd1/p.

Therefore, we use SimQ with parameter Bd1/p instead of B. The repetitions help reduce

the error to compensate for the extra loss factor. Specifically, the output of SimQ+ denoted

by Q(Y ) is given by

Q(Y ) = 1
k
·
k∑
i=1

Qi
SimQ(Y ;Bd1/p), (4.4)

where Qi
SimQ are independent iterations of SimQ.

The next component of SimQ+ is how the encoder of SimQ+ expresses the output of

these k copies of SimQ to attain compression. If represented naively, this will require

O(d2/p log d). But we can do much better since we only need the average value of these

entries. For that, we can simply report the type of this vector – the frequency of each

index in the k length sequence. The signs of the input coordinates for the non-zero entries

can be sent separately.

Note that there are d+ 1 indices overall, as SimQ can pick any index from {0, . . . d}.

Therefore, the total number of types is
(
d+k
k

)
, which can at the most be ( ed+ek

k
)k bits.

Hence, the precision needed to represent the type is at the most k log e+ k log( d
k

+ 1).

The type of the input can be used to determine a set I0 of non-zero indices that appear

at least once. There are at most k such entries. Therefore, we can use a binary vector of

length k to store the signs for these entries. We use this representation in SimQ+, with

the indices in I0 represented in the vector in increasing order.
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Theorem 4.5.2. For a p ∈ [2,∞), let Q be the quantizer SimQ+ described in (4.4). Then,

for Y such that ‖Y ‖q ≤ B a.s., Q(Y ) can be represented in k log e+ k log( d
k

+ 1) + k bits,

E [Q(Y )|Y ] = Y , and αp(Q) ≤
√
B2d2/p

k
+B2.

Proof. We already saw how to represent the output of the k copies of SimQ using k log e+

k log( d
k

+ 1) + k bits. For bounding αp(Q), note from (4.4) that SimQ+ is an unbiased

quantizer since SimQ is unbiased. Further, denoting by Qi(Y ) the output Qi
SimQ(Y ;Bd1/p),

we get

E
[
‖Q(Y )‖2

2

]
= E

[
‖Q(Y )− Y ‖2

2

]
+ E

[
‖Y ‖2

2

]
= 1
k2

k∑
i=1

E
[
E
[
‖Qi(Y )− Y ‖2

2|Y
]]

+ E
[
‖Y ‖2

2

]
= E [‖Q1(Y )− Y ‖2

2]
k

+ E
[
‖Y ‖2

2

]
≤ d2/pB2

k
+B2,

where the first identity uses the fact that Q(Y ) is an unbiased estimate of Y ; the second uses

the fact that Qi(Y )− Y are zero-mean, independent random variables when conditioned

on Y ; the third uses the fact that Qi(Y ) − Y are identically distributed; and the final

inequality is by the performance of SimQ.

The proof of upper bound for p ∈ [2,∞) in Theorem 4.4.1 is completed by setting

k = d2/p and using Theorems 4.5.2 and 4.3.1.

4.6 Our Quantizers for p ∈ [1, 2]

For p in [1, 2], the oracle yields unbiased subgradient estimates Y such that ‖Y ‖q ≤ B

almost surely. Our goal is to quantize such Y s in an unbiased manner and ensure that

E
[
‖Q(Y )‖2

q

]
is O(B2). It can be seen that a simple unbiased uniform quantizer will achieve

this using d(log d1/q + 1). However, our goal here is to get a result that is stronger than

this baseline performance. To that end, we split the input vector Y in two parts Y1 and

Y2 with the first part having `∞ norm less than c and the second part having less than
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d/∆1 nonzero coordinates. We use an “`∞ ball quantizer” (a uniform quantizer) for Y1

and an “`2 ball quantizer” for Y2.

Specifically, set c := B∆1/q
1

d1/q , where ∆1 is that in Theorem 4.4.1. Then, define

Y1 :=
d∑
i=1

Y (i)1{|Y (i)|≤c}ei, Y2 :=
d∑
i=1

Y (i)1{|Y (i)|>c}ei. (4.5)

Clearly, ‖Y1‖∞ ≤ c. Further, since ‖Y ‖q ≤ B, the number of nonzero coordinates in Y2

can be at the most Bq/cq = d/∆1. For quantizing Y1, we use the coordinate-wise uniform

quantizer (CUQ) described in Section 3.4.1. In order to quantize Y1 in (4.5), we set the

parameters of CUQ to

M = c, log(k + 1) =
⌈
log(2

√
2∆1/q

1 + 2)
⌉
. (4.6)

Lemma 4.6.1. Let Qu be the quantizer CUQ with parameters M and k set as in (4.6).

Then, for Y such that ‖Y ‖q ≤ B a.s. and Y1 as that in (4.5), Qu(Y1) can be represented

in d
⌈
log(2

√
2∆1/q

1 + 2)
⌉
bits, E [Qu(Y1) | |Y ] = Y1, and E

[
‖Qu(Y1)‖2

q

]
≤ 3B2.

Proof. CUQ requires a precision of d log(k + 1), which coincides with the statement above

for our choice of k. To see unbiasedness, note that CUQ is an unbiased quantizer as

long as all the coordinates of the input do not exceed M . Since we have set M = c

and ‖Y1‖∞ = c, this property holds. Finally, to show that E
[
‖Qu(Y1)‖2

q

]
≤ 3B2, note

that E
[
‖Qu(Y1)‖2

q

]
≤ 2E

[
‖Qu(Y1)− Y1‖2

q

]
+ 2E

[
‖Y1‖2

q

]
. Also, E

[
‖Qu(Y1)− Y1‖2

q

]
≤ B2,

where we use the fact that for M set as in (4.6) we have that |Qu(Y1)(i)− Y1(i)| ≤ 2M
(k−1)

a.s., ∀i ∈ [d], by the description of CUQ.

In order to quantize Y2, we indicate the coordinates with non-zero entries. This takes

less than d bits. Then, we quantize the restriction Y ′2 of Y2 to these nonzero entries. Recall

that the dimension of Y ′2 is less than d′ := d/∆1. Also, the `2 norm of Y ′2 is less than

‖Y ‖2 ≤ ‖Y ‖qd1/2−1/q ≤ Bd1/2−1/q =: B′.

We need a quantizer Q such that E
[
‖Q(Y ′2)‖2

q

]
is O(B2). As seen in the proof of

Lemma 4.6.1, one way to do this is to ensure E
[
‖Q(Y ′2)− Y ′‖2

q

]
is O(B2), which, in turn,
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can be ensured if E [‖Q(Y ′2)− Y ′2‖2
2] is O(B2). To achieve this, we can use an unbiased

quantizer for the unit `2 ball in Rd, which can quantize it to an MSE of O(1/d1−2/q) using

O(d log(d1/2−1/q) bits. We note that SimQ+, while optimal for the stochastic optimization

use-case, does not yield the required scaling of bits in MSE. A natural candidate quantizer is

RATQ, which is, in fact, close to information theoretically optimal. We set the parameters

of RATQ in terms of B′ and d′. We set

m = 3B′2

d′
, m0 = 2B′2

d′
· ln s, log h = dlog(1 + ln∗(d′/3))e ,

s = log h, log(k + 1) = ∆1. (4.7)

Lemma 4.6.2. Let Qat,R be the quantizer RATQ with parameters set as (4.7). Then,

for Y such that ‖Y ‖q ≤ B a.s. and Y ′2 the restriction of Y2 in (4.5), Qat,R(Y ′2) can be

represented in 2d+ ∆2 bits, E [Qat,R(Y ′2) | |Y ] = Y ′2 , and E
[
‖Qat,R(Y ′2)‖2

q

]
≤ 3B2.

Proof. First, we note that the output of RATQ can be represented in dd′/se (log h) +

d log(k + 1) bits, which, in this case, is less than

d

∆1 log h · (log h) + log h+
(
d

∆1
log(k + 1)

)
≤ 2d+ ∆2.

For unbiasedness, note that for our choice of m,m0, h, RATQ is always an unbiased

quantizer of the input. Finally, for showing E
[
‖Qat,R(Y ′2)‖2

q

]
≤ 3B2, we note that

E
[
‖Qat,R(Y ′2)‖2

q

]
≤ 2E

[
‖Qat,R(Y ′2)− Y ′2‖2

q

]
+ 2E

[
‖Y ′2‖2

q

]
≤ 2E

[
‖Qat,R(Y ′2)− Y ′2‖2

q

]
+ 2B2

≤ 2E
[
‖Qat,R(Y ′2)− Y ′2‖2

2

]
+ 2B2.

The proof will be complete upon showing that E [‖Qat,R(Y ′2)− Y ′2‖2
2] ≤ B2/2, towards

which we apply Lemma 3.6.9 to get

E
[
‖Qat,R(Y ′2)− Y ′2‖2

2

]
≤ B2d1−2/q · 9 + 3 ln s

(k − 1)2 ,
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and substituting our choice of k.

The overall quantizer Q of input vector Y is the sum of quantized outputs of Y1

and Y2. By Lemmas 4.6.1 and 4.6.2, the quantized output of Y can be represented in

d
(⌈

log(2
√

2∆1
1/q + 2)

⌉
+ 3

)
+ ∆2 bits1. Furthermore, αp(Q) ≤

√
12B. These facts along

with Theorem 4.3.1 prove the upper bound in Theorem 4.4.1 for p ∈ [1, 2].

4.7 Characterization of general tradeoff and mean

square bounded oracles

We close with the remark that an almost complete characterization of optimization error

E∗(X ,Oc,p, T,Wcom,r) for any r, p (namely, the low-precision regime) can be obtained using

our quantizers and the ideas developed in this Chapter. We describe in detail algorithms

to achieve these bounds below.

4.7.1 Upper Bounds on E∗(X ,Oc,1, T,Wcom,r) for p ∈ (2,∞]

For upper bounds when p ∈ [2,∞), note that the parameter k of SimQ+ gives us a nice

lever to operate under any precision constraint r ≥ log d. It turns out that such a quantizer

along with PSGD leads to upper bounds which are off by at the most
√

log d factor from

the lower bounds in Theorem 2.4.5.

4.7.2 Upper Bounds on E∗(X ,Oc,1, T,Wcom,r)

We now describe a new scheme to match the lower bound for p = 1. Our scheme divides

the entire horizon of T iterations into Tr/d different phases. For any phase t ∈ [Tr/d], the

same point xt in the domain is queried d/r times. For each of the d/r queries in a phase,

we use r-bit quantizers to quantize different coordinates of the subgradient output. At a

high level, we want to use these r bits to send 1 bit each for r different coordinates, sending

1 bit for each coordinate across the phases. However, there is one technical difficulty. We

1This accounts for the communication needed to send the nonzero indices of Y2, too.
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have not assumed that making queries for the same point gives identically distributed

random variables. We circumvent this difficulty using random permutations to create

unbiased estimates for the subgradients.

Specifically, for a permutation σ : [d]→ [d] chosen uniformly at random using public

randomness, we select the coordinates σ(1 + (i − 1) · r) to σ(i · r) of the subgradient

estimate ĝi supplied by the oracle for the ith query in the tth phase (i.e., ith time we

query the point xt) and quantize all of these coordinates using an 1-bit unbiased quantizer

for the interval [−B,B]. Note that such a quantizer can be formed since ‖ĝi‖∞ ≤ B.

Using this procedure, the quantized gradient for every query in each phase can be

stored in r bits. Furthermore, using all the d/r quantized estimates received in a phase,

we can create an estimate of the subgradient by simply adding all the estimates. Denote

by Q̄t our subgradient estimate in the tth phase. Then,

Q̄t =
d∑
i=1

Qπ(i)(ĝi)eσ(i),

where ĝi is the subgradient estimate returned by the oracle when we query xt for the ith

time and Qi is a 1-bit unbiased estimator of the ith coordinate of gradient estimate given

below: For all vectors g, such that ‖g‖∞ ≤ B, we have

Qi(g) =


B w.p. g(i)+B

2B

−B w.p. B−g(i)
2B

.

Then, we use Q̄t to update xt to xt+1 using stochastic mirror descent with mirror map

φa(x) : = ‖x‖
2
a

a− 1 ,

where a = 2 log d
2 log d−1 .

Theorem 4.7.1. For r ∈ N, we have

sup
X∈X1(D)

E∗(X ,Oc,1, T,Wcom,r) ≤
c0DB

√
log d√
T

·
√

d

d ∧ r
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1: for t ∈ [Tr/d] do

2: for i ∈ [d/r] do

3: At Center: Query the oracle for xt

4: At Oracle: Output the r-bit vector of 1-bit unbiased estimates of the

r coordinates {1 + (i− 1) · r, . . . , i · r} of ĝi(xt) given by

Q̄t =
i·r∑

j=1+(i−1)·r
Qπ(j)(ĝi(xt))eσ(j)

5: At Center: xt+1 = arg minx∈X (ηt〈x, Q̄t〉) +DΦa(x, xt))

6: Output:
∑T

i=1 xt
T

Figure 4.4: π∗ Almost optimal Scheme for Communication constrained optimization for

convex and `1 lipschitz family

for every D > 0.

Proof. Note that our first order optimization algorithm π∗ uses Tr/d iterations. Moreover,

the subgradient estimates Q̄t are unbiased and have their infinity norm bounded by B.

Namely, we have obtained an unbiased subgradient oracle which produces estimates with

infinity norm bounded by B. Thus, using the standard analysis of mirror descent using

noisy subgradient oracle for optimization over an `1 ball with mirror map φa(x) : = ‖x‖2a
a−1

(see Theorem 4.3.1), the proof is complete.

4.7.3 Upper Bounds on E∗(X ,Oc,p, T,Wcom,r) for p ∈ (1, 2).

For p ∈ (1, 2), the scheme described in Algorithm 4.4 can still be used. However, the

upper bounds would be off by a factor of d1/q. This factor increases with increase in p

and and as we get closer to 2, employing optimal quantizers for the Euclidean setting is a

better option. For instance, employing RATQ along with the appropriate mirror descent

algorithm would lead to optimization error off by d1/2−q from the lower bound. Thus,
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inteprolationg between the schemes for p = 1 and p = 2, we match the lower bound in

Theorem 2.4.4 upto a factor of min d1/q, d1/2−q for any precision r and p ∈ (1, 2).

Finally, we believe that removing these remaining factors can lead to new quantizers,

and is of research interest.

4.7.4 Mean square bounded oracles

For mean square bounded oracles mentioned in Chapter 3, the bias in the quantized oracle

output is nearly inevitable. In our previous chapter, we proposed appropriate gain-shape

quantizers for quantizing the oracle output in the Euclidean setup, which resulted in lesser

bias over standard quantizers. This idea is valid for the general `p setup; in particular,

we can use a gain quantizer to quantize the `q norm of the oracle output and a shape

quantizer to quantize the oracle output vector normalized by the `q norm, the shape of

the oracle output vector. Note that the shape vector has has `q norm 1, which allows us

to use the quantizers developed in this chapter to quantize the shape. The gain is a scalar

random variable which has its second moment bounded by B2. To quantize such a random

variable, we can use AGUQ from previous chapter. Clearly, the lower bounds for almost

surely bounded oracles remain valid for mean square bounded oracles as well. Additionally,

we can also derive lower bounds for a specific class of quantizers, such as those derived in

previous chapter, which help in capturing the reduction in the convergence rate due to

mean square bounded noise.
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Chapter 5

Communication-Efficient Distributed

Mean Estimation

5.1 Synopsis

Communication efficient distributed mean estimation is an important primitive that

arises in many distributed learning and optimization scenarios such as federated learning.

Without any probabilistic assumptions on the underlying data, we study the problem of

distributed mean estimation in two different settings: 1) where the server does not have

access to side information and 2) where the server has access to side-information. In the

first setting, we use RATQ proposed in Chapter 3 and improve over the state of the art.

In the second setting, we propose Wyner-Ziv estimators, which are communication

and computationally efficient and near-optimal when an upper bound for the distance

between the side information and the data is known. In a different direction, when there

is no knowledge assumed about the distance between side information and the data, we

present an alternative Wyner-Ziv estimator that uses correlated sampling. This latter

setting offers universal recovery guarantees, and perhaps will be of interest in practice

when the number of users is large and keeping track of the distances between the data

and the side information may not be possible.

The results presented in this Chapter are from [69] and [66].

128
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5.2 Introduction

Consider the problem of distributed mean estimation for n vectors {xi}ni=1 in Rd, where xi
is available to client i. Each client communicates to a server using a few bits to enable the

server to compute the empirical mean

x̄ = 1
n

n∑
i=1

xi. (5.1)

This estimation problem has become a crucial primitive for distributed optimization

scenarios such as federated learning, where the data is distributed across multiple clients.

One of the main bottlenecks in such distributed scenarios is the significant communication

cost incurred due to client communication at each iteration of the distributed algorithm.

This has spurred a recent line of work which seeks to design quantizers to express xis using

a low precision and, yet, enable the server to compute a high accuracy estimate of x̄ (see

[88], [52], [17], [46], and the references therein).

Most of the recent works on distributed mean estimation focus on the setting where

the server must estimate the sample mean based on the client vectors, and nothing else.

However, in practice, the server may also have access to some side information. For

example, consider the task of training a machine learning model based on remote client

data as well as some publicly accessible data. At each iteration, the server communicates

its global model to the client, based on which the clients compute their updates (the

gradient estimates based on their local data), compress them, and then send them to the

server. The server may choose to compute its own update using the publicly available

dataset to complement the updates from the client. In a related setting, the server can use

the previously received gradients as side information for the next gradients expected from

the clients. Similarly, distributed mean estimation with side information can be used for

variance reduction in other problems such as power iteration or parallel SGD (cf. [20]).

Motivated by these observations, for the distributed mean estimation problem described

at the start of the section, we study both the settings of distributed mean estimation:

1. The no side information setting, where the server does not have access to any side
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information.

2. The side information setting, where the server has access to some side information

{yi}ni=1 in Rd, in addition to the communication from clients. Here, yi can be viewed

as server’s initial estimate (guess) of xi. We emphasize that the side information yi
is available only to the sever and can, therefore, be used for estimating the mean at

the server, but is not available to the clients while quantizing the updates {xi}ni=1.

We close this section with the remark that distributed mean estimation in the no side

information setting can be viewed as a special case of distributed mean estimation in the

side information setting, where the side-information {yi}ni=1 is set to 0. We will, therefore,

describe our model for the side-information setting.

5.2.1 The model

Consider the input x := (x1, . . . , xn) and the side information y := (y1, . . . , yn). The

clients use a communication protocol to send r bits each about their observed vector

to the server. For the ease of implementation, we restrict to non-interactive protocols.

Specifically, we allow simultaneous message passing (SMP) protocols π = (π1, ..., πn) where

the communication Ci = πi(xi, U) ∈ {0, 1}r of client i, i ∈ [n], can only depend on its

local observation xi and public randomness U . Note that the clients are not aware of

side information y, which is available only to the server. In effect, the message Ci is

obtained by quantizing xi using an appropriately chosen randomized quantizer. Denoting

the overall communication by Cn := (C1, C2, ..., Cn), the server uses the transcript (Cn, U)

of the protocol and the side information y to form the estimate of the sample mean1

ˆ̄x = ˆ̄x(Cn, U,y); see Figure 5.1 for a depiction of our setting. We call such a π an r-bit

SMP protocol with input (x,y) and output ˆ̄x.

We measure the performance of protocol π for inputs x and y and output ˆ̄x using

1While side information yi is associated with client i, we do not enforce this association in our general
formulation at this point.
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(y1, . . . , yn)
Server

x1

Client 1

x2

Client 2

xn

Client n

Figure 5.1: Problem setting of mean estimation with side information

mean squared error (MSE) given by

E(π,x,y) := E
[
‖ˆ̄x− x̄‖2

2

]
,

where the expectation is over the public randomness U and x̄ is given in (5.1). We study

the MSE of protocols for x and y such that the Euclidean distance between xi and yi is at

most ∆i, i.e.,

‖xi − yi‖2 ≤ ∆i, ∀ i ∈ [n]. (5.2)

Denoting ∆ := (∆1, . . . ,∆n), we are interested in the performance of our protocols for the

following settings:

1. The no side information setting, where ∆i = 1 and yi = 0, for all i ∈ [n]. That

is, the server does not have access to side information and the input vectors lie in

the unit Euclidean ball.

2. The side information setting, where the server has access to some side-information.

We study two different cases for this setting, which are described as follow:

(a) The known ∆ setting, where ∆i is known to client i and the server;

(b) The unknown ∆ setting, where ∆is are unknown to everyone.

In all these settings, we seek to find efficient r-bit quantizers for xi that will allow

accurate sample mean estimation. We now point out the difference between the two
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different settings of distributed mean estimation in presence of side information. In the

known ∆ setting, the quantizers of different clients can be chosen using the knowledge of

∆; in the unknown ∆ setting, they must be fixed irrespective of ∆.

In another direction, we distinguish the small-precision setting of r ≤ d from the

large-precision2 setting of r > d. The former is perhaps of more relevance for federated

learning and high-dimensional distributed optimization, while the latter has received a lot

of attention in the information theory literature on rate-distortion theory.

As a benchmark, we recall the result for distributed mean estimation with no side-

information from [88]. [88] showed that the minmax MSE in the no side-information

setting is

Ω
(
d

nr

)
. (5.3)

Further, [88] derive an upper bound which matches the lower bound upto a factor of

log log d.

5.2.2 Our contributions

In the no side-information setting, we improve over the upper bound of [88] and match

the lower bound upto a miniscule log log∗ d factor by using RATQ from Chapter 3.

In the side-information setting, drawing on ideas from distributed quantization problems

in information theory (cf. [91]), specifically the Wyner-Ziv problem, we present Wyner-Ziv

estimators. In the known ∆ setting, for a fixed ∆, and the small-precision setting of r ≤ d,

we propose an r-bit SMP protocol π∗k which satisfies

E(π∗k,x,y) = O

(
n∑
i=1

∆2
i

n
· d log log n

nr

)
,

for all x and y satisfying (5.2). Thus, in the case where all xis lie in the Euclidean ball

of radius 1, we improve upon the optimal estimator for distributed mean estimation in

2The definition of large-precision setting is different from the definition of high-precision setting
described in the first part of the thesis. Observe that the large precision setting here simply refers to the
setting of r > d, whereas in the high-precision setting from earlier chapters we looked to characterize the
minimum precision required to attain the classical convergence rate.
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the no side information setting (5.3) in the regime ∑n
i=1

∆2
i log logn

n
≤ 1. Our estimator is

motivated by the classic Wyner-Ziv problem, and hence, we refer to it as the Wyner-Ziv

estimator. The details of the algorithm are given in Section 5.5.3.

Our protocol uses the same (randomized) r-bit quantizer for each client’s data and

simply uses the sample mean of the quantized vectors as the estimate for x̄. Furthermore,

the common quantizer used by the clients is efficient and has nearly linear time-complexity

of O(d log d). As was the case for RATQ, our proposed quantizer first applies a random

rotation to the input vectors xi at client i and the side information vector yi at the server.

This ensures that the ∆i upper bound on the `2 distance of xi and yi is converted to

roughly a ∆i/
√
d upper bound on the `∞ distance between xi and yi. This then enables

us to use efficient one-dimensional quantizers for each coordinate of the xi, which can

now operate with the knowledge that the server knows a yi with each coordinate within

roughly ∆i/
√
d of xi’s coordinates.

Moreover, we show that this protocol π∗k has optimal (worst-case) MSE up to an

O(log log n) factor. That is, we show that for any other r-bit SMP protocol π for r ≤ d,

we can find x and y satisfying (5.2) such that

E(π,x,y) = Ω
(

min
i∈{1,...,n}

∆2
i ·

d

nr

)
.

In the unknown ∆ setting, we propose a protocol π∗u which adapts to the unknown

distance ∆i between xi and yi and, remarkably, provides MSE guarantees dependent on

∆. Specifically, for the small-precision setting of r ≤ d, the protocol satisfies

E(π∗u,x,y) = O

(
n∑
i=1

∆i

n
· d ln∗ d

nr

)
,

for all x and y in the unit Euclidean ball B := {x ∈ Rd : ‖x‖2 ≤ 1} and satisfying (5.2).

Thus, we improve upon the optimal estimator for the no side information counterpart

(5.3) in the regime ∑n
i=1

∆i ln∗ d
n
≤ 1. Once again, the quantizer employed by the protocol is

efficient and has nearly linear time-complexity of O(d log d). At the heart of our proposed

quantizer is the technique of correlated sampling from [43] which enables to derive a ∆
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dependent MSE bound.

Furthermore, both our quantizers can be extended to the large-precision regime of

r > d. The quantizer for the known ∆ setting directly extends by using r/d bits per

dimension. The MSE of the SMP protocol using this quantizer for all the clients is only a

factor of log n+ r/d from the lower bound derived in [20] for the large-precision regime.

The quantizer for the unknown ∆ setting can be extended by sending the “type” of the

communication vector, following an idea proposed in Chapter 4 for SimQ+. The MSE of

the SMP protocol using this quantizer for all the clients falls as 2−r/d ln∗ d as opposed to

d/r that can be obtained using naive extensions of our quantizer.

5.2.3 Prior work

The version of the distributed mean estimation problem with no side information at the

server has been extensively studied. For any protocol in this setting operating with a

precision constraint of r ≤ d bits per client, using a strong data processing inequality from

[25], [88] shows a lower bound on MSE of Ω
(
d

nr

)
, when all xis lie in the Euclidean ball

of radius one. [88] propose a rotation based uniform quantization scheme which matches

this lower bound up to a factor of log log d for any precision constraint r.

The known ∆ setting described above was first considered in [20]. The scheme of [20]

relies on lattice quantizers with information theoretically optimal covering radius. Explicit

lattices to be used and computationally efficient decoding is not provided.

In contrast, we provide explicit computationally efficient protocols for both small-

and large-precision settings. Also, we establish lower bounds showing the optimality of

our quantizer upto a multiplicative factor of log log n in the small-precision regime of

r ≤ d. In comparison, the scheme of [20] is off by a factor of d
r
from this lower bound.

Thus, when r � d, our scheme performs significantly better than that in [20]. We remark

that the unknown ∆ setting, which is perhaps more important in certain applications

where estimating the distance of side information of each client is infeasible, has not been

considered before.
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Organization

We will review some preliminaries in the next section. Our results for the small-precision

regime in known ∆ setting are provided in Section 5.5 and in the unknown ∆ setting are

provided in Section 5.6. In Section 5.7, we extend our results to the large-precision regime.

Finally, we close with all the proofs in Section 5.8.

5.3 Preliminaries and the structure of our protocols

While our lower bound for the known ∆ setting holds for an arbitrary SMP protocol, all

the protocols we propose in this chapter, for the no side information setting, as well as

the known ∆ and the unknown ∆ settings in the side information case, have a common

structure. We use r-bit quantizers to form estimates of xis at the server and then compute

the sample mean of the estimates of xis. To describe our protocols and facilitate our

analysis, we begin by concretely defining the distributed quantizers needed for this problem.

Further, we present a simple result relating the performance of the resulting protocol to

the parameters of the quantizer.

An r-bit quantizer Q for input vectors in X ⊂ Rd and side information Y ⊂ Rd consists

of randomized mappings3 (Qe, Qd) with the encoder mapping Qe : X → {0, 1}r used by

the client to quantize and the decoder mapping Qd : {0, 1}r×Y → X used by the server to

aggregate quantized vectors. The overall quantizer Q is given by the composition mapping

Q(x, y) = Qd((Qe(x), y).

In our protocols, for input x and side information y, client i uses the encoder Qe
i for

the r-bit quantizer Qi to send Qe
i (xi). The server uses Qe

i (xi) and yi to form the estimate

x̂i = Qi(xi, yi) of xi. We assume that the randomness used in quantizers Qi for different

i is independent, whereby x̂i are independent of each other for different i. Then server

finally forms the estimate of the sample mean as

ˆ̄x := 1
n

n∑
i=1

x̂i. (5.4)

3We can use public randomness U for randomizing.
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For any quantizer Q, the following two quantities will determine its performance when

used in our distributed mean estimation protocol:

α(Q; ∆) := sup
x∈X ,y∈Y:‖x−y‖2≤∆

E
[
‖Q(x, y)− x‖2

2

]
,

β(Q; ∆) := sup
x∈X ,y∈Y:‖x−y‖2≤∆

‖E [Q(x, y)− x] ‖2
2,

where4 the expectation is over the randomization of the quantizer. Note that α(Q; ∆) can

be interpreted as the worst-case MSE and β(Q,∆) the worst-case bias over x ∈ X and

y ∈ Y such that ‖x− y‖2 ≤ ∆.

The result below will be very handy for our analysis.

Lemma 5.3.1. For x ∈ X n and y ∈ Yn satisfying (5.2) and r-bit quantizers Qi, i ∈ [n],

using independent randomness for different i ∈ [n], the estimate ˆ̄x in (5.4) and the sample

mean x̄ in (5.1) satisfy

E
[
‖ˆ̄x− x̄‖2

2

]
≤

n∑
i=1

α(Qi; ∆i)
n2 +

n∑
i=1

β(Qi; ∆i)
n

.

5.4 Distributed mean estimation with no side infor-

mation

As stated previously, in the setting of distributed mean estimation with no side information

we have ∆i = 1 and yi = 0, ∀ i ∈ [n]. We will therefore state our results under these

assumptions for this case. Our protocol π∗n uses subsampled RATQ as the quantizer for

each client, which is described in Section 3.4.3, with parameters of the Quantizer set as in

(3.13) and (3.14).

Theorem 5.4.1. For n ≥ 2, fixed ∆ = (∆1, . . . ,∆n), d ≥ r ≥ 2 (3 + dlog(1 + ln∗(d/3))e) ,

and y, where ∆i = 1 and yi = 0, ∀ i ∈ [n], the protocol π∗n with parameters set as in (3.13)

4The α above differs from the α2 defined in the first part of the thesis; the former characterizes the
worst-case MSE, while the latter describes the worst-case L2 norm. However, β is similar to β2 defined in
the first part of the thesis, as both characterize the worst-case bias of the quantizer.
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and (3.14) is an r-bit protcol which satisfies

E(π∗n,x,y) ≤ (6 + 2 dlog(1 + ln∗(d/3))e)
∑
i∈[n]

1
n
· d
nr

 .
The proof is a direct extension of the analysis of RATQ presented in Chapter 3 and is

deferred to Section 5.8.2.

This matches the lower bound of Ω
(
d

nr

)
, derived in [88, Theorem 5], upto a tight

log log∗(d). To the best of our knowledge, for r � d, this is the tightest known upper

bound for distributed mean estimation with no-side information. Moreover, the protocol

π∗n can be efficiently implemented as the encoding and decoding complexity of RATQ is

d log d.

5.5 Distributed mean estimation with known ∆

In this section, we present our Wyner-Ziv estimator for the known ∆ setting. As described

in Section 5.3, we use the the same (randomized) quantizer across all the clients and form

the estimate of sample mean as in (5.4). We only need to define the common quantizer

used by all the clients, which we do in Section 5.5.3. In Sections 5.5.1 and 5.5.2, we provide

the basic building blocks of our final quantizer. Further, in Section 5.5.4, we derive a

lower bound for the worst-case MSE that establishes the near-optimality of our protocol.

Throughout we restrict to the small-precision setting of r ≤ d.

5.5.1 Modulo Quantizer (MQ)

The first subroutine used by our larger quantizer is the Modulo Quantizer (MQ). MQ is a

one dimensional distributed quantizer that can be applied to the input x ∈ R with side

information y ∈ R. We give an input parameter ∆′ to MQ where |x− y| ≤ ∆′. In addition

to ∆′, MQ also has the resolution parameter k and the lattice parameter ε as inputs.

For an appropriate ε to be specified later, we consider the lattice Zε = {εz : z ∈ Z}.

For a given input x, the encoder Qe
M finds the closest points in Zε larger and smaller than
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x. Then, one of these points is sampled randomly to get an unbiased estimate of x. The

sampled point will be of the form z̃ε, where z̃ is in Z. We note that the chosen point z̃

satisfies

εE [z̃] = x and

|x− εz̃| < ε, almost surely. (5.5)

The encoder sends w = z̃ mod k to the decoder, which requires log k bits.

Upon receiving this w, the decoder Qd looks at the set Zw,ε = {(zk + w) · ε : z ∈ Z}

and decodes the point closest to y, which we denote by QM(x, y). Note that declaring y

will already give a MSE of less than ∆. A useful property of this decoder is that its output

is always within a bounded distance from y; namely, since in Step 1 of Alg. 5.3 we look

for the closest point to y in the lattice Zw,ε := {(zk + w) · ε : z ∈ Z}, the output QM(x, y)

satisfies

|QM(x, y)− y| ≤ kε, almost surely. (5.6)

We summarize MQ in Alg. 5.2 and 5.3.

Require: Input x ∈ R, Parameters k, ∆′, and ε

1: Compute zu = dx/εe, zl = bx/εc

2: Generate z̃ =


zu, w.p. x/ε− zl

zl, w.p. zu − x/ε
3: Output: Qe

M(x) = z̃ mod k

Algorithm 5.2: Encoder Qe
M(x) of MQ

The result below provides performance guarantees for QM. The key observation is that

the output QM(x, y) of the quantizer equals z̃ε with z̃ found at the encoder, if ε is set

appropriately.

Lemma 5.5.1. Consider the Modulo Quantizer QM described in Alg. 5.2 and 5.3 with
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Require: Input w ∈ {0, . . . , k − 1}, y ∈ R

1: Compute ẑ = arg min{|(zk + w) · ε− y| : z ∈ Z}

2: Output: Qd
M(w, y) = (ẑk + w)ε

Algorithm 5.3: Decoder Qd
M(w, y) of MQ

parameter ε set to satisfy

kε ≥ 2(ε+ ∆′). (5.7)

Then, for every x, y in R such that |x− y| ≤ ∆′, the output QM(x, y) of MQ satisfies

E [QM(x, y)] = x and

|QM(x, y)− x| ≤ ε, almost surely.

In particular, we can set ε = 2∆′/(k−2), to get |QM(x, y)−x| ≤ 2∆′/(k−2). Furthermore,

the output of QM can be described in log k bits.

We close with a remark that the modulo operation used in our scheme is the simplest

and easily implementable version of classic coset codes obtained using nested lattices used

in distributed quantization (cf. [30, 60,96]) and was used in [20] as well.

5.5.2 Rotated Modulo Quantizer (RMQ)

We now describe Rotated Modulo Quantizer (RMQ). RMQ and the subsequent quantizers

in this section will be used to quantize input vector x in Rd with side information y in

Rd, where ‖x− y‖2 ≤ ∆. RMQ first preprocesses the input x and side information y by

randomly rotating them and then simply applies MQ for each coordinate. For rotation,

we multiply both x and y with a random matrix R, given in (3.6), which is sampled using

shared randomness between the encoder and decoder. We formally describe the quantizer

in Alg. 5.4 and 5.5.

Remark 28. We remark that the vector R (x− y) has zero mean subgaussian coordinates
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with a variance factor of ∆2/d. From Lemma 3.6.6, this implies that for all coordinates i

in [d], we have

P (|R (x− y) (i)| ≥ ∆′) ≤ 2e−
∆′2d
2∆2 .

This observation allows us to use ∆′ ≈ ∆/
√
d for MQ applied to each coordinate.

Require: Input x ∈ Rd, Parameters k and ∆′

1: Sample R as in (3.6) using public randomness

2: x′ = Rx

3: Output: Qe
M,R(x) = [Qe

M(x′(1)), . . . , Qe
M(x′(d)]T using parameters k, ε,

and ∆′ for Qe
M of Alg. 5.2

Algorithm 5.4: Encoder Qe
M,R(x) of RMQ

Require: Input w ∈ {0, . . . , k − 1}d, y ∈ Rd,

Parameters k and ∆′

1: Get R from public randomness.

2: y′ = Ry

3: Output: Qd
M,R(w, y) = R−1 ∑

i∈[d]
Qd

M(w(i), y′(i))ei

using parameters k, ε, and ∆′ for Qd
M of Alg. 5.3,

Algorithm 5.5: Decoder Qd
M,R(w, y) of RMQ

Lemma 5.5.2. Fix ∆ ≥ 0. Let QM,R be RMQ described in Alg. 5.4 and 5.5. Then,

for5 k ≥ 4, δ ∈ (0,∆), ∆′ =
√

6(∆2/d) ln(∆/δ) and the parameter ε of MQ set to

ε = 2∆′/(k − 2), we have for X = Y = Rd that

α(QM,R; ∆) ≤ 24 ∆2

(k − 2)2 ln ∆
δ

+ 154 δ2 and

β(QM,R; ∆) ≤ 154 δ2.

5In the proof, we provide a general bound which holds for all k.
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Furthermore, the output of quantizer QM,R can be described in d log k bits.

Remark 29. The choice of ∆′ in the first statement of the Lemma 5.5.2 is based on Remark

28. We note that δ is a parameter to control the bias incurred by our quantizer. By

setting ∆′ = ∆ we can get an unbiased quantizer, but it only recovers the performance

obtained by simply using MQ for each coordinate, an algorithm considered in [20] as well.

5.5.3 Subsampled RMQ: A Wyner-Ziv quantizer for Rd

Our final quantizer is a modification of RMQ of previous section where we make the

precision less than r bits by randomly sampling a subset of coordinates. Specifically, note

that Qe
M,R(x) sends d binary strings of log k bits each. We reduce the resolution by sending

only a random subset S of these strings. This subset is sampled using shared randomness

and is available to the decoder, too. Note that Qd
M,R applies Qd

M to these strings separately;

now, we use Qd
M to decode the entries in S alone. We describe the overall quantizer in

Alg. 5.6 and 5.7.

Require: Input x ∈ R, Parameters k, ∆′, and µ

1: Sample S ⊂ [d] u.a.r. from all subsets of [d] of cardinality µd and sample

R as in (3.6) using public randomness

2: Output: Qe
WZ(x) = {Qe

M(Rx(i)) : i ∈ S} using parameters k, ε, and ∆′ for

Qe
M of Alg. 5.2

Algorithm 5.6: Encoder Qe
WZ(x) of subsampled RMQ

Remark 30. We remark that, typically, when implementing random sampling, we set the

unsampled components to 0, as was the case in Chapter 3. However, to get ∆ dependent

bounds on MSE, we set the unsampled coordinates to the corresponding coordinate of

side information and center our estimate appropriately to only have small bias.

The result below relates the performance of our final quantizer QWZ to that of QM,R,

which was already analysed in the previous section.
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Require: Input w ∈ {0, . . . , k − 1}µd, y ∈ R

1: Get S and R from public randomness

2: Compute x̃ = (Qd
M(w(i), Ry(i)), i ∈ S) using parameters k, ε, and ∆′ for

Qd
M of Alg. 5.3

3: x̂R = 1
µ

∑
i∈S (x̃(i)−Ry(i)) ei +Ry

4: Output: Qd
WZ(w, y) = R−1x̂R

Algorithm 5.7: Decoder Qd
WZ(w, y) of subsampled RMQ

Lemma 5.5.3. Fix ∆ > 0. Let QWZ and QM,R be the quantizers described in Alg. 5.6

and 5.7 and Alg. 5.4 and 5.5, respectively. Then, for µd ∈ [d], we have for X = Y = Rd

that

α(QWZ; ∆) ≤ α(QM,R; ∆)
µ

+ ∆2

µ
and

β(QWZ; ∆) = β(QM,R; ∆).

Furthermore, the output of quantizer QWZ can be described in µd log k bits.

We are now equipped to prove our first main result. Our protocol π∗k uses QWZ for

each client as described in Section 5.3 and forms the estimate ˆ̄x as in (5.4). We set the

parameters needed for QWZ in Alg. 5.6 and 5.7 as follows: For client i, we set the parameters

of MQ as

δ = ∆i√
n
, log k =

⌈
log(2 +

√
12 lnn)

⌉
, ∆′ =

√
6(∆2

i /d) ln(∆i/δ), ε = 2∆′/(k − 2),

(5.8)

and set the parameter µ as

µd =
⌊

r

log k

⌋
. (5.9)

We characterize the resulting error performance in the next result.
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Theorem 5.5.4. For a n ≥ 2, a fixed ∆ = (∆1, ...,∆n), and d ≥ r ≥ 2
⌈
log(2 +

√
12 lnn)

⌉
,

the protocol π∗k with parameters as set in (6.2) and (5.9) is an r-bit protocol which satisfies

E(π∗k,x,y) ≤ (79 dlog(2 +
√

12 lnn)e+ 26)
(

n∑
i=1

∆2
i

n
· d
nr

)
,

for all x,y satisfying (5.2).

Proof. Denoting by Qi the quantizer QWZ with parameters set for user i, by Lemmas 5.3.1

and 5.5.3, we get

E
[
‖ˆ̄x− x̄‖2

2

]
≤

n∑
i=1

α(Qi; ∆i)
n2 +

n∑
i=1

β(Qi; ∆i)
n

≤ 1
µn2

n∑
i=1

(α(QM,R,i; ∆i) + ∆2
i ) +

n∑
i=1

β(QM,R,i; ∆i)
n

,

where QM,R,i denotes RMQ with parameters set for user i. Further, since k ≥ 4 holds when

n ≥ 2 for our choice of parameters, by using Lemma 5.5.2 and substituting δ2 = ∆2
i /n, we

get

α(QM,R,i; ∆i) ≤
12∆2

i lnn
(k − 2)2 + 154∆2

i

n
,

β(QM,R,i; ∆i) ≤
154∆2

i

n
,

which with the previous bound gives

E
[
‖ˆ̄x− x̄‖2

2

]
≤ 1
µd

(
12 lnn

(k − 2)2 + 154
n

+ 1 + 154µ
)

n∑
i=1

d∆2
i

n2

≤ 79dlog(2 +
√

12 lnn)e+ 26
r

n∑
i=1

d∆2
i

n2 ,

where in the final bound we used our choice of k, the assumption that n ≥ 2 (which implies

that d ≥ r ≥ 6), and the fact that dr/ log ke ≥ r/2 if r ≥ 2 log k.

Remark 31. We note that by using MQ for each coordinate without rotating (or even with
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rotation using R as above) and with ∆′ = ∆i yields MSE less than

O

(
n∑
i=1

∆2
i

n
· d log d

nr

)
,

for r ≤ d. Thus, our approach above allows us to remove the log d factor at the cost of a

(milder for large d) log log n factor.

Thus, as can be seen from the lower bound presented in Theorem 5.5.5 below, our

Wyner-Ziv estimator π∗k is nearly optimal. Finally, QWZ can be efficiently implemented

as both the encoding and decoding procedures have nearly-linear time complexity6 of

O(d log d).

5.5.4 Lower bound

We now prove a lower bound on the MSE incurred by any SMP protocol using r bits per

client. The proof relies on the strong data processing inequality in [25] and is similar in

structure to the lower bound for distributed mean estimation without side-information in

[88].

Theorem 5.5.5. Fix ∆ = (∆1, . . . ,∆n). There exists a universal constant c < 1 such

that for any r-bit SMP protocol π, with r ≤ cd, there exists input (x,y) ∈ R2d satisfying

(5.2) and such that

E(π,x,y) ≥ cmin
i∈[d]

∆2
i ·

d

nr
.

5.6 Distributed mean estimation for unknown ∆

Finally, we present our Wyner-Ziv estimator for the unknown ∆ setting. We first, in

Section 5.6.1, describe the idea of correlated sampling from [43], which will serve as an

essential building block for all our quantizers in this section. We then build towards our

6The most expensive operation at both the encoder and decoder of this estimator is the Hadamard
matrix multiplication operation, which requires d log d real operations.
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final quantizer, described in 5.6.4, by first describing its simpler versions in Section 5.6.2

and 5.6.3. Once again, we restrict to the small-precision setting of r ≤ d.

5.6.1 The correlated sampling idea

Suppose we have two numbers x and y lying in [0, 1]. A 1-bit unbiased estimator for x is

the random variable 1{U≤x}, where U is a uniform random variable in [0, 1]. The variance

of such an estimator is x− x2. We consider a variant of this estimator given by:

X̂ = 1{U≤x} − 1{U≤y} + y, (5.10)

where, like before, U is a uniform random variable in [0, 1]. Such an estimator still uses

only 1-bit of information related to x. It is easy to check that this estimator unbiased

estimator of x, namely E
[
X̂
]

= x. The variance of this estimator is given by

Var(X̂) = E
[
(X̂ − x)2

]
= |x− y| − (x− y)2,

which is lower than that of the former quantizer when x is close to y. We build-on this basic

primitive to obtain a quantizer with MSE bounded above by a ∆-dependent expression,

without requiring the knowledge of ∆.

5.6.2 Distance Adaptive Quantizer (DAQ)

DAQ and subsequent quantizers in this Section will be described for input x and side

information y lying in Rd. The first component of our quantizer, DAQ, which uses (5.10)

and incorporates the correlated sampling idea discussed earlier. Both the encoder and

the decoder of DAQ use the same d uniform random variables {U(i)}di=1 between [−1, 1],

which are generated using public randomness. At the encoder, each coordinate of vector x

is encoded to the bit 1{U(i)≤x(i)}. At the decoder, using the bits received from the encoder,

side information y, and the public randomness {U(i)}di=1, we first compute bits 1{U(i)≤y(i)}
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for each i ∈ [d]. Then, the estimate of x is formed as follows:

QD(x, y) =
d∑
i=1

(
1{U(i)≤x(i)} − 1{U(i)≤y(i)}

)
ei + y.

We formally describe the quantizer in Alg. 5.8 and 5.9.

Require: Input x ∈ Rd

1: Sample U(i) ∼ Unif [−1, 1],∀i ∈ [d]

2: x̃ = ∑d
i=1 1{U(i)≤x(i)} · ei

3: Output: Qe
D(x) = x̃, where x̃ is viewed as binary vector of length d

Algorithm 5.8: Encoder Qe
D(x) of DAQ

Require: Input w ∈ {0, 1}d, y ∈ Rd,

1: Get U(i),∀i ∈ [d], using public randomness

2: Set ỹ = ∑d
i=1 1{U(i)≤y(i)} · ei

3: Output: Qd
D(w, y) = 2(w − ỹ) + y, where w is viewed as a vector in Rd

Algorithm 5.9: Decoder Qd
D(w, y) of DAQ

The next result characterizes the performance for DAQ.

Lemma 5.6.1. Let QD denote DAQ described in Algorithms 5.8 and 5.9. Then, for

X = Y = B and every ∆ > 0, we have

α(QD; ∆) ≤ 2∆
√
d and β(QD; ∆) = 0.

Furthermore, the output of quantizer QD can be described in d bits.

5.6.3 Rotated Distance Adaptive Quantizer (RDAQ)

Next, we proceed as for the known ∆ setting and add a preprocessing step of rotating x

and y using random matrix R of (3.6), which is sampled using shared randomness. We
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remark that here random rotation is used to exploit the subgaussianity of the rotated

x and y, whereas in RMQ of previous section it was used to exploit the subgaussianity

of x − y. That is, RMQ exploited the fact that each coordinate of the Rotated vector

R(x− y) is much smaller compared to each of the coordinate of (x− y), whereas RDAQ

exploits the fact that coordinates of both the rotated vectors Rx and Ry are much smaller

relative to coordinates of x and y. After this rotation step, we proceed with a quantizer

similar to DAQ, but we quantize each coordinate at multiple “scales.” We describe this

step in detail below.

Using multiple scales. In DAQ, we considered each coordinate of the input vector x

to be anywhere between [−1, 1] and used one uniform random variable for each coordinate.

Now, we will use h independent uniform random variables for each coordinate, each

corresponding to a different scale [−Mj,Mj], j ∈ {0, 1, 2, . . . , h− 1}. For convenience, we

abbreviate [h]0 := {0, 1, 2, . . . , h− 1}.

Specifically, let U(i, j) be distributed uniformly over [−Mj,Mj], independently for

different i ∈ [d] and different j ∈ [h]0. The values Mjs correspond to different scales and

are set, along with h, as follows: For all j ∈ [h]0,

M2
j := 6

d
· e∗j, log h := dlog(1 + ln∗(d/6))e , (5.11)

where e∗j denotes the jth iteration of e given by e∗0 := 1, e∗1 := e, e∗j := ee
∗(j−1) . All

the dh uniform random variables are generated using public randomness and are available

to both the encoder and the decoder.

The intervals [−Mj,Mj ] are designed to minimize the MSE of our quantizer by tuning

its “resolution” to the “scale” of the input, and while still ensuring unbiased estimates.

Observe that this is the second time we are using the general idea of using multiple intervals

for quantizing randomly rotated vectors, with the first time being RATQ in Chapter 3.

Multiscale DAQ. After rotation, we proceed as in DAQ, except that we use different

scale Mj for different coordinates. Ideally, for the ith coordinate, we would like to
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use Mz∗(i), where z∗(i) is the smallest index such that both Rx(i) and Ry(i) lie in

[−Mz∗(i),Mz∗(i)]. However, since y is not available to the encoder, we simply resort to

sending the smallest value z(i) which is the smallest index such that Rx(i) ∈ [−Mz(i),Mz(i)]

and apply the encoder of DAQ h times to compress x at all scales, i.e., we send h bits

(1{U(i,j)≤Rx(i)}, j ∈ [h]0).

Thus, the overall number of bits used by RDAQ’s encoder is d · (h + dlog he). At

RDAQ’s decoder, using z(i), we compute the smallest index z∗(i) containing both Rx(i)

and Ry(i). In effect, the decoder emulates the decoder for DAQ applied to Ry, but for

scale Mz∗(i). The encoding and decoding algorithm of RDAQ are described in Alg. 5.10

and 5.11, respectively.

Require: Input x ∈ B

1: Sample U(i, j) ∼ Unif [−Mj,Mj], i ∈ [d], j ∈ [h]0, and sample R as

in(3.6) using public randomness.

2: xR = Rx

3: for i ∈ [d] do

z(i) = min{j ∈ [h]0 : |xR(i)| ≤Mj}

4: for j ∈ [h]0 do

x̃j = ∑d
i=1 1{U(i,j)≤xR(i)}ei

5: Output: Qe
D,R(x) = ([x̃0, . . . , x̃h−1], z), where we view x̃js as binary vec-

tors

Algorithm 5.10: Encoder Qe
D,R(x) at for RDAQ

Then, the quantized output QD,R corresponding to input vector x and side-information

y is

QD,R(x, y) = R−1

 d∑
i=1

2Mz∗(i)
(
1{U(i,z∗(i))≤Rx(i)} − 1{U(i,z∗(i))≤Ry(i)}

)
+Ry

.
We remark that since rotated coordinates Rx(i) and Ry(i) have subgaussian tails, with

very high probability Mz∗(i) will be much less than 1, which helps in reducing the overall
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Require: Input (w, z) ∈ {0, 1}d×h × [h]d0 and y ∈ B

1: Get U(i, j), i ∈ [d], j ∈ [h]0, and R using public randomness.

2: yR = Ry

3: for i ∈ [d] do

z′(i) = min{j ∈ {[h]0} : |yR(i)| ≤Mj}

z∗(i) = max{z(i), z′(i)}

4: w′ = ∑d
i=1 2Mz∗(i)

(
w(i, z∗(i))− 1{U(i,z∗(i))≤yR}

)
5: x̂R = w′ +Ry

6: Output: Qd
D,R(w, y) = R−1x̂R.

Algorithm 5.11: Decoder Qd
D,R(x) for RDAQ

MSE significantly. The performance of the algorithm is characterized below.

Lemma 5.6.2. Let QD,R be RDAQ described in Alg. 5.10 and 5.11. Then, for X = Y = B

and every ∆ > 0, we have

α(QD,R; ∆) ≤ 16
√

3∆ and β(QD,R; ∆) = 0.

Furthermore, the output of quantizer Q can be described in d(h+ log h) bits.

5.6.4 Subsampled RDAQ: A universal Wyner-Ziv quantizer for

unit Euclidean ball

Finally, we bring down the precision of RDAQ to r, as before for the known ∆ setting, by

retaining the output of RDAQ for only coordinates i ∈ S, where S is generated uniformly

at random from all subsets of [d] of cardinality µd using public randomness. Specifically,

we execute Alg. 5.10 and 5.11 with S replacing [d] and multiplying w′ in Step 4 of Alg. 5.11

by normalization factor of d/|S|. The output of the resulting encoder is given by

Qe
WZ,u(x) = {Qe

D,R(x)(i) : i ∈ S}, (5.12)
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where Qe
D,R(x)(i) represents the encoded bits ([x̃0(i), . . . , x̃h−1(i)], z(i)) for the ith coordi-

nate using RDAQ, and the output of the resulting decoder is given by

QWZ,u(x, y) = R−1

 1
µ

∑
i∈S

2Mz∗(i)

(
1{U(i,z∗(i))≤Rx(i)} − 1{U(i,z∗(i))≤Ry(i)}

)
+Ry

. (5.13)

Lemma 5.6.3. Let QWZ,u be the quantizers described in (5.12) and (5.13) and QD,R be

RDAQ described in Alg. 5.10 and 5.11. Then, for µd ∈ [d], X = Y = B, and every ∆ > 0,

we have

α(QWZ,u; ∆) ≤ α(QD,R; ∆)
µ

and β(QWZ,u; ∆) = 0.

Furthermore, the output of quantizer QWZ,u can be described in µd(h+ log h) bits.

We are now equipped to prove our second main result. Our protocol π∗u uses QWZ,u for

each client as described in Section 5.3 and forms the estimate ˆ̄x as in (5.4). Unlike for the

known ∆ setting, we now use the same parameters for QWZ,u for all clients, given by

µd =
⌊

r

h+ log h

⌋
. (5.14)

Theorem 5.6.4. For d ≥ r ≥ 2(h + log h) and h given in (5.11), the r-bit protocol π∗u
with parameters as set in (5.14) satisfies

E(π∗u,x,y) ≤ (128
√

3 (1 + ln∗(d/6)))
∑
i∈[n]

∆i

n
· d
nr

 ,
for all x,y satisfying (5.2), for every ∆ = (∆1, ...,∆n).

Proof. Denote by ˆ̄x the output of the protocol. Then, by Lemmas 5.3.1 and Lemma 5.6.3,

we get

E
[
‖ˆ̄x− x̄‖2

2

]
≤ 1
n2µ

n∑
i=1

α(QD,R; ∆i)

≤ 16
√

3
n2µ

n∑
i=1

∆i,

where the previous inequality is by Lemma 5.6.2. The proof is completed by using µ ≥
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r
2d(h+log h) ≥

r
4dh , which follows from (5.14) and the assumption that r ≥ 2(h+ log h).

The Wyner-Ziv estimator π∗u is universal in ∆: it operates without the knowledge of

the distance between the input and the side information and yet gets MSE depending on

∆. Moreover, it can be efficiently implemented as both the encoding and the decoding

procedures have nearly linear time complexity of O(d log d).

5.7 The large-precision regime

5.7.1 RMQ in the large-precision regime.

For the known ∆ setting, our quantizer RMQ described in Alg. 4 and 5 remains valid

even for r > d. We will assume r = md for integer m ≥ 2. For each client i, we set

δ = ∆i

n
1
2 (2r/d − 2)

, log k = r

d
, ∆′ =

√
6(∆2

i /d) ln ∆i/δ, ε = 2∆′
k − 2 . (5.15)

The performance of protocol π∗k using RMQ with parameters set as in (5.15) for each

client can be characterized as follows.

Theorem 5.7.1. For a fixed ∆ = (∆1, ...,∆n) and r = md for integer m ≥ 2, the protocol

π∗k with parameters set as in (5.15) satisfies

E(π∗k,x,y) =
(

12 lnn+ 24r
d

+ 154/n+ 166
)∑

i∈[n]

∆2
i

n
· 1
n(2r/d − 2)2

 ,
for all x,y satisfying (5.2).

Proof. Denoting by Qi the quantizer QM,R with parameters set for client i, by Lemmas 5.3.1

and 5.5.2, we get

E
[
‖ˆ̄x− x̄‖2

2

]
≤

n∑
i=1

α(Qi; ∆i)
n2 +

n∑
i=1

β(Qi; ∆i)
n

Further, since k ≥ 4 holds when r ≥ 2d for our choice of parameters, by using Lemma 5.5.2
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and substituting δ2 = ∆2
i /n(2r/d − 2)2, we get

α(Qi; ∆i) ≤
12∆2

i ln(n(2r/d − 2)2)
(2r/d − 2)2 + 154∆2

i

n(2r/d − 2)2 ,

β(Qi; ∆i) ≤
154∆2

i

n(2r/d − 2)2 .

which with the previous bound gives

E
[
‖ˆ̄x− x̄‖2

2

]
≤
(

12 lnn+ 24r
d

+ 154
n

+ 154
) n∑
i=1

∆2
i

n2(2r/d − 2)2 ,

where use the inequality ln x ≤ x, ∀x ≥ 0, to bound ln(2r/d − 2)2/(2r/d − 2)2 by 1.

Remark 32. Similar to Remark 31, we note that using MQ for each coordinate without

rotating (or even with rotation using R as above) with ∆′ = ∆i yields MSE less than

O

(
n∑
i=1

∆2
i

n
· d

n22r/d

)
,

for r ≥ d. Thus our approach above allows us to remove the d factor at the cost of a

(milder for large d) log n+ r/d factor.

5.7.2 Boosted RDAQ: RDAQ in the large-precision regime.

Moving to the unknown ∆ setting, we describe an update to RDAQ described in Alg. 10

and 11 for the large-precision setting. For brevity, we denote by m := r/d the number

of bits per dimension. A straight-forward scheme to make use of the high precision is to

independently implement the RDAQ quantizer approximately bm/ ln∗ dc times and use the

average of the quantized estimates as the final estimate. We will see that the MSE incurred

by such an estimator is O(∆ ln∗ d/m). We will show that this naive implementation can

be significantly improved and an exponential decay in MSE with respect to m can be

achieved.

We boost RDAQs performance as follows. Simply speaking, instead of sending the
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bits produced by multiple instances of the encoder of RDAQ, we send the “type” of each

sequence. A similar idea appeared in [67] for the case without any side information. At the

encoding stage of RDAG given in Alg. 10 and 11, after random rotation and computing

z in Steps 1 to 3 of Alg. 10, we repeat Step 4 N times with independent randomness

each time and store only the total number of ones seen for each coordinate i and scale j.

Specifically, let Ut(i, j) be an independent uniform random variable in [−Mj,Mj], for all

i ∈ [d], j ∈ [h]0, and t ∈ [N ], which are generated using public randomness between the

encoder and the decoder. Using this randomness, we compute x̃j,t = ∑d
i=1 1{Ut(i,j)≤xR(i)}ei

for all j ∈ [h]0. Then, instead of storing x̃j,t for each j and t, we store the sum ∑n
t=1 x̃j,t

for each j ∈ [h]0. Since each coordinate of the sum can be stored in logN bits, the new

encoder’s output can be stored in d(h logN + log h). Thus, we can implement this scheme

by using m = (h logN + log h) bits per dimension.

At the decoding stage, we rotate y and compute z∗ in precisely the same manner as

done in Steps 1 to 3 of the decoding Alg. 11 of RDAQ. Then, using the encoded input

received, the side-information y, the same random variables Ut(i, j) and random matrix R

used by the encoder, the final estimate Q(x) is

Q(x) = R−1

 1
N
·
∑
i∈[d]

∑
t∈[N ]

(
Bt
i,Rx −Bt

i,Ry

)
ei +Ry

 , (5.16)

where Bt
i,v = 1{Un(i,z∗(i))≤v(i)} for v in Rd.

The result below characterizes the performance of our quantizer Boosted RDAQ Q.

Lemma 5.7.2. Let Q be Boosted RDAQ described above. Then, we have for X = Y = Rd

and every ∆ > 0, we have

αu(Q; ∆) ≤ 16
√

3∆
N

and βu(Q; ∆) = 0.

Furthermore, the output of the quantizer can be described in d(h logN + log h) bits.

Thus, when we have a total precision budget of r = dm bits using the Boosted RDAQ

algorithm with number of repetitions N = 2b(m−log h)/hc, we get an exponential decay in
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MSE with respect to m.

We consider the protocol π∗u that uses the Q above for each client with Mj and h set

as in (5.11), i.e., with

N = 2b(m−log h)/hc, M2
j = 6e∗j

d
, j ∈ [h]0, log h = dlog(1 + ln∗(d/6))e. (5.17)

Therefore, by the previous lemma and Lemma 5.3.1, we get the following result.

Theorem 5.7.3. For r = dm with integer m ≥ h+ log h, the protocol π∗u with parameters

as set in (5.17) satisfies

E(π∗u,x,y) =
∑
i∈[n]

∆i

n
· 64

√
3

n2r/(d(2+2 ln∗(d/6))) ,

for all x,y satisfying (5.2), for every ∆ = (∆1, ...,∆n).

Proof. Denote by ˆ̄x the output of the protocol. Then, by Lemmas 5.3.1 and Lemma 5.7.2,

we get

E
[
‖ˆ̄x− x̄‖2

2

]
≤ 1
n2

n∑
i=1

α(Q; ∆i)

≤ 16
√

3
n2N

n∑
i=1

∆i,

where the previous inequality is by Lemma 5.7.2. The proof is completed by using

N ≥ 2m/h
21+(log h)/h ≥

2m/h
4 ≥ 2m/(2+2 ln∗(d/6))

4 ,

where the first inequality follows from using bxc ≥ x− 1 for the floor function in the value

of N in (5.17), the second follows from the fact that log x ≤ x,∀x ≥ 0, and the third

follows from dxe ≤ x+ 1 for the ceil function in the value of h in (5.17).
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5.8 Proofs of results

5.8.1 Proof of Lemma 5.3.1

For the estimator ˆ̄x in (5.4), with x̂i = Qi(xi, yi), we have

E


∥∥∥∥∥∥ 1
n
·
∑
i∈[n]

Qi(xi, yi)−
1
n
·
∑
i∈[n]

xi

∥∥∥∥∥∥
2

2


= 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖2

2

]
+ 1
n2 ·

∑
i 6=j

E [〈Qi(xi, yi)− xi, Qj(xj, yj)− xj〉]

= 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖2

2

]
+ 1
n2 ·

∑
i 6=j
〈E [Qi(xi, yi)]− xi,E [Qj(xj, yj)]− xj〉

= 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖2

2

]
+
(

1
n
·
∑
i

‖E [Qi(xi, yi)]− xi‖2

)2

− 1
n2 ·

∑
i

‖E [Qi(xi, yi)]− xi‖2
2

≤ 1
n2 ·

∑
i∈[n]

E
[
‖Qi(xi, yi)− xi‖2

2

]
+ (n− 1)

n2 ·
∑
i

‖E [Qi(xi, yi)]− xi‖2
2,

where the second identity uses the independence of Qi(xi, yi) for different i and the final

step uses Jensen’s inequality. The result follows by bound each term using the fact that x

and y satisfy (2) and the definitions of α(Qi,∆i) and β(Qi,∆i), for i ∈ [n].

5.8.2 Proof of Theorem 5.4.1

We will need the following Lemma to complete the proof of Theorem 5.4.1.

Lemma 5.8.1. For any r ≥ Ω(log ln∗ d) and for any Y such that ‖Y2‖ ≤ 1, let Q be the

composition of RCS with RATQ. Then, Q(Y ) can be represented in r bits, E [Q(Y ) | Y ] = Y,

and

E
[
‖Q(Y )− Y ‖2

2 | Y
]
≤ d(3 + dlog(1 + ln∗ d/3)e)

r
.

Proof. By the description of RATQ we have that Qat,R = R−1Qat,I(RY ), where Qat,I is
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as defined in (3.25). Thus, using the fact that R is a unitary matrix

E
[
‖Qat,R(Y )− Y ‖2

2

]
= E

[
‖Qat,I(RY )−RY ‖2

2

]
.

When the parameters are set as in (3.14), we get

RY (j) ≤Mh−1 a.s., ∀j ∈ [d],

whereby

E
[
‖Qat,R(Y )− Y ‖2

2

]
= E

∑
j∈[d]

(Qat,I(RY )(j)−RY (j))2
1RY (j)≤Mh−1

 .
The proof is completed by noting that Y satisfies ‖Y ‖2 ≤ 1 a.s., setting m = 3/d and

m0 = (2/d) ln s, and applying Lemma 3.6.9.

Combining the Lemma above with Lemma 5.3.1 completes the proof of upper bound.

5.8.3 Proof of Lemma 5.5.1

As mentioned in (5.5), the integer z̃ found in Alg. 5.2 satisfies E [z̃ε] = x and |x− z̃ε| < ε.

Therefore, it suffices to show that the output of the quantizer satisfies QM(x, y) = z̃ε.

To see that QM(x, y) = z̃ε, denote the lattice used in decoding Alg. 5.3 as Zw,ε :=

{(zk + w) · ε : z ∈ Z}. The decoding algorithm finds the point in Zw,ε that is closest to

y. Note that w = z̃ mod k, whereby z̃ε is a point in this lattice. Further, for any other

point λ 6= z̃ε in the lattice, we must have

|λ− z̃ε| ≥ kε,

and so, by triangular inequality, that

|λ− y| ≥ |λ− z̃ε| − |z̃ε− y| ≥ kε− |z̃ε− y|.
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Thus, z̃ε is closer to y than λ if

kε > 2|z̃ε− y|. (5.18)

Next, by using (5.5) once again, we have

|z̃ε− y| ≤ |z̃ε− x|+ |x− y| < ε+ ∆′,

which by condition (5.7) in the lemma implies that (5.18) holds. It follows that |λ− y| >

|z̃ε− y| for every λ ∈ Zw,ε, which shows that QM(x, y) = z̃ε and completes the proof.

5.8.4 Proof of Lemma 5.5.2

Recall from Remark 28 that for the random matrix R given in (3.6), for every vector z ∈ Rd,

the random variables Rz(i), i ∈ [d], are sub-Gaussian with variance parameter ‖z‖2
2/d.

Furthermore, we need the following bound for “truncated moments” of sub-Gaussian

random variables.

Lemma 5.8.2. For a sub-Gaussian random Z with variance factor σ2 and every t ≥ 0,

we have

E
[
Z2
1{|Z|>t}

]
≤ 2(2σ2 + t2)e−t2/2σ2

.

Proof. Note that for any nonnegative random variable U , it can be verified that

E
[
U1{U>x}

]
= xP (U > x) +

∫ ∞
x

P (U > u) du.

Upon substituting U = Z2 and x = t2, along with the fact that Z is sub-Gaussian with

variance parameter σ2, we get

E
[
Z2
1{Z2>t2}

]
= t2P (Z2 > t2) +

∫ ∞
t2

P (Z2 > u) du

≤ 2t2e−t2/2σ2 + 2
∫ ∞
t2

e−u/2σ
2
du

≤ 2(t2 + 2σ2)e−t2/2σ2
,
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which completes the proof.

We now handle the MSE α(Q) and bias β(Q) separately below.

Bound for MSE α(Q): Denote by QM,R(x, y) the final quantized value of the quantizer

RMQ. For convenience, we abbreviate

x̂R := RQM,R(x, y).

Observe that x̂R = ∑
i∈[d] QM(Rx(i), Ry(i))ei, where QM is the MQ of Alg. 5.2 and 5.3

with parameters k ≥ and ∆′ set as in the statement of the lemma. Since R is a unitary

transform, we have

E
[
‖QM,R(x, y)− x‖2

2

]
= E

[
‖x̂R −Rx‖2

2

]
=

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

]

=
d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1{|R(x−y)(i)|≤∆′}
]

+
d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1{|R(x−y)(i)|≥∆′}
]

(5.19)

We consider each error term on the right-side above separately. We can view the first

term as the error corresponding to MQ, when the input lies in its “acceptance range.”

Specifically, under the event {|R (x− y) (i)| ≤ ∆′}, we get by Lemma 5.5.1 that

|x̂R(i)−Rx(i)| ≤ ε = 2∆′
k − 2 , almost surely,

whereby

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1|R(x−y)(i)|≤∆′
]
≤ d ε2. (5.20)



Chapter 5. Communication-Efficient Distributed Mean Estimation 159

The second term on the right-side of (5.19) corresponds to the error due to “overflow” and

is handled using concentration bounds for the rotated vectors. Specifically, we get

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1{|R(x−y)(i)|≥∆′}
]

≤ 2
d∑
i=1

[
E
[
(x̂R(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]

+ E
[
(Rx(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]]

≤ 2k2ε2
d∑
i=1

P (|R (x− y) (i)| ≥ ∆′) + 2
d∑
i=1

E
[
(Rx(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]

≤ 4dk2ε2e−d∆′2/2∆2 + 2
d∑
i=1

E
[
(Rx(i)−Ry(i))2

1{|R(x−y)(i)|≥∆′}
]

≤ 4dk2ε2e−d∆′2/2∆2 + 4(2∆2 + d∆′2)e−
d∆′2

2∆2 , (5.21)

where the second inequality follows upon noting that from the description decoder of MQ

in Alg. 5.3 that |x̂R(i)− Ry(i)| ≤ εk almost surely for each i ∈ [d]; the third inequality

uses the fact that R(x−y)(i) is sub-Gaussian with variance parameter ‖x−y‖2
2/d ≤ ∆2/d;

and fourth inequality is by Lemma 5.8.2.

Upon combining (5.19), (5.20), and (5.21), and substituting ε = 2∆′/(k − 2) and

∆′2 = 6(∆2/d) log ∆/δ, we obtain

E
[
‖QM,R(x, y)− x‖2

2

]
≤ d ε2 + 4dk2ε2e−

d∆′2

2∆2 + 4(2∆2 + d∆′2)e−
d∆′2

2∆2 (5.22)

= 24 ∆2

(k − 2)2 ln ∆
δ

+ 96δ2
(

k

k − 2

)2

· ln(∆/δ)
(∆/δ) + 8δ2 · 1 + 3 ln(∆/δ)

(∆/δ)

≤ 24 ∆2

(k − 2)2 ln ∆
δ

+
96
e

(
k

k − 2

)2

+ 24
e2/3

 · δ2,

where we used (1 + 3 ln u)/u ≤ 3/e2/3 and (ln u)/u ≤ 1/e for every u > 0. We conclude by

noting that for k ≥ 4, 96
e

(
k

k − 2

)2

+ 24
e2/3

 ≤ 154.
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Bias β(Q): The calculation for the bias is similar to that we used to bound the second

term on the right-side of (5.19). Using the notation x̂R introduced above, we have

‖E [QM,R]− x‖2

= ‖E
[
R−1 (x̂R −Rx)

]
‖2

= ‖RE
[
R−1 (x̂R −Rx)

]
‖2

= ‖E
[
RR−1 (x̂R −Rx)

]
‖2

= ‖E [x̂R −Rx] ‖2,

where the second identity holds since R is a unitary matrix.

Further, since QM(x, y) is an unbiased estimate of x when |x−y| ≤ ∆′ (see Lemma 5.5.1),

by (5.20) and (5.21) we obtain

‖E [x̂R −Rx] ‖2
2 ≤

d∑
i=1

E
[
(x̂R(i)−Rx(i))1|R(x−y)i|≥∆′)

]2
≤

d∑
i=1

E
[
(x̂R(i)−Rx(i))2

1|R(x−y)(i)|≥∆′)
]

≤ 154 δ2,

which completes the proof.

5.8.5 Proof of Lemma 5.5.3

Mean Square Error α(QS,R): From the description of Algorithms 5.6 and 5.7, we know

that the quantized output of subsampled RMQ QWZ for an input x is

QWZ(x) = R−1x̂R, where

x̂R = 1
µ

∑
i∈[d]

(QM(Rx(i), Ry(i))−Ry(i))1{i∈S} ei +Ry,

and QM(Rx(i), Ry(i)) denotes the quantized output of the modulo quantizer for an input

Rx(i) and side-information Ry(i). Use the shorthand Q(Rx(i)) for QM(Rx(i), Ry(i)), we
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have

E
[
‖QWZ(x)− x‖2

2

]
=
∑
i∈[d]

E

( 1
µ

(Q(Rx(i))−Ry(i))1{i∈S} − (Rx(i)−Ry(i))
)2


=
∑
i∈[d]

E
[

1
µ2Q(Rx(i))−Rx(i)2

1{i∈S}

]

+
∑
i∈[d]

E

( 1
µ

(Rx(i)−Ry(i))1{i∈S} − (Rx(i)−Ry(i))
)2


=
∑
i∈[d]

1
µ
E
[
(Q(Rx(i))−Rx(i))2

]
+
∑
i∈[d]

E
[
(Rx(i)−Ry(i))2

]
· E

( 1
µ
1{i∈S} − 1

)2


=
∑
i∈[d]

1
µ
E
[
(Q(Rx(i))−Rx(i))2

]
+
∑
i∈[d]

E
[
(Rx(i)−Ry(i))2

]
· 1− µ

µ

≤ α(QM,R)
µ

+ ∆2

µ
,

where we used the independence of S and R in the third identity and used the fact that R

is unitary in the final step.

Bias β(QS,R): This follows upon noting that the conditional expectation (over S) of

the output of subsampled RMQ given R is the vector R−1∑
i∈[d] QM(Rx(i), Ry(i))ei, which,

in turn, is equivalent in distribution to the output of RMQ.

5.8.6 Proof of Theorem 5.5.5

We denote ∆min = mini∈[d] ∆i and set yis to be 0. Let x1, ..., xn be an iid sequence with

common distribution such that for all j ∈ [d] we have

x1(j) =


∆min√

d
w.p.1+α(j)δ

2

−∆min√
d

w.p.1−α(j)δ
2 ,

where α ∈ {−1, 1}d is generated uniformly at random. We have the following Lemma for

such xis, which provides a lower bound for the MSE of any estimator of the mean of the
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distribution of xis.

Lemma 5.8.3. For x1, ..., xn generated as above and any estimator ˆ̄x of the mean formed

using only r-bit quantized version of xis, we have7

E

∥∥∥∥∥ˆ̄x− δ∆min√
d
α

∥∥∥∥∥
2

2

 ≥ c′ · d∆2
min

nr
,

where c′ < 1 is a universal constant.

Proof of Lemma 5.8.3 follows from either [25, Proposition 2] or [3, Theorem 11].

The proof of Theorem 5.5.5 is completed by using this claim. Specifically, using

2a2 + 2b2 ≥ (a+ b)2, we have

2E
[
‖ˆ̄x− x̄‖2

2

]
+ 2E

[
‖x̄− δ∆min√

d
α‖2

2

]
≥ E

[
‖ˆ̄x− δ∆min√

d
α‖2

2

]
,

which, along with the observation that

E
[
‖x̄− δ∆min√

d
α‖2

2

]
≤ ∆2

min

n
,

gives

E
[
‖ˆ̄x− x̄‖2

2

]
≥c
′d∆2

min

2nr − ∆2
min

n

≥c
′∆2

mind

4nr ,

when (d/r) ≥ 4/c′. The proof is completed by setting c = c′/4.

Remark 33. Since the lower bound in [3] holds for sequentially interactive protocols, if

we allow interactive protocols for mean estimation where client i gets to see the messages

transmitted by the clients j in [i−1], and can design its quantizers based on these previous

messages, even then the lower bound above will hold.

7Note that the side information yis are all set to 0.
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5.8.7 Proof of Lemma 5.6.1

We will prove a general result which will not only prove Lemma 5.6.1 but will also be

useful in the proof of Lemma 5.6.2. Consider x and y in Rd such that each coordinate of

both x and y lies in [−M,M ]. Also, consider the following generalization of DAQ:

QD(x, y) =
d∑
i=1

2M
(
1{U(i)≤x(i)} − 1{U(i)≤y(i)}

)
ei + y,

where {Ui}i∈[d] are iid uniform random variables in [−M,M ]. We will show that

E [QD(x, y)] = x and E
[
‖QD(x, y)− x‖2

2

]
≤ 2M‖x− y‖1, (5.23)

which upon setting M = 1 proves Lemma 5.6.1.

Towards proving (5.23), note that from the estimate formed by QD, it is easy to see

that E [QD(x, y)] = x. The MSE can be bounded as follows:

E
[
‖QD(x, y)− x‖2

2

]
=

d∑
i=1

E
[
(2M

(
1{Ui≤x(i)} − 1{Ui≤y(i)}

)
− (x(i)− y(i)))2

]

=
d∑
i=1

4M2 |x(i)− y(i)|
2M − ‖x− y‖2

2

= 2M‖x− y‖1 − ‖x− y‖2
2,

where we used the observations that 2M
(
1{Ui≤x(i)} − 1{Ui≤y(i)}

)
is an unbiased estimate

of (x(i)− y(i)) and that
(
1{Ui≤x(i)} − 1{Ui≤y(i)}

)2
equals one if and only if exactly one of

the indicators is one, which in turn happens with probability |x(i)−y(i)|
2M . .

5.8.8 Proof of Lemma 5.6.2

Worst-case bias β(QD,R∆): Since the final interval [−Mh−1,Mh−1] contains [−1, 1], we

can see that E [QD,R(x, y)] = x.
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Worst-case MSE α(QD,R; ∆): We denote by Bx
ij and B

y
ij the bits

Bx
ij = 1{U(i,j)≤Rx(i)} and By

ij = 1{U(i,j)≤Ry(i)}.

Then, the final quantized value of the quantizer RDAQ can be expressed as QD,R(X) =

R−1x̂R where, with z∗(i) denoting the smallest Mj such that the interval [−Mj,Mj]

contains Rx(i) and Ry(i) and [h]0 = {0, . . . , h− 1},

x̂R :=
∑

i∈{1,...,d}

 ∑
j∈[h]0

2Mj ·
(
Bx
ij −B

y
ij

)
+Ry(i)

1{z∗(i)=j}ei.

Since R is a unitary transform, we get

E
[
‖QD,R(x)− x‖2

2

]
= E

[
‖RQD,R(x)−Rx‖2

2

]
= E

[
‖x̂R −Rx‖2

2

]
=
∑
i∈[d]

E
[
(x̂R(i)−Rx(i))2

]

=
∑
i∈[d]

E


 ∑
j∈[h]0

(2Mj ·
(
Bx
ij −B

y
ij

)
+Ry(i)−Rx(i))1{z∗(i)=j}

2


=
∑
i∈[d]

∑
j∈[h]0

E
[(

2Mj

(
Bx
ij −B

y
ij

)
+Ry(i)−Rx(i)

)2
1{z∗(i)=j},

]

where the last identity uses 1{z∗(i)=j1}1{z∗(i)=j2} = 0 for all j1 6= j2, to cancel the cross-terms

in the expansion of (x̂R(i)−Rx(i))2. Conditioning on R and using the independence of

1{z∗(i)=j} from the randomness used in MQ, we get

E
[
‖QD,R(x)− x‖2

2

]
=
∑
i∈[d]

∑
j∈[h]0

E
[
E
[(

2Mj

(
Bx
ij −B

y
ij

)
+Ry(i)−Rx(i)

)2
| R
]
1{z∗(i)=j}

]

≤
∑
i∈[d]

∑
j∈[h]0

E
[
2Mj|Rx(i)−Ry(i)|1{z∗(i)=j}

]
,
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≤
∑
i∈[d]

E
[
2M0|Rx(i)−Ry(i)|1{z∗(i)=0}

]
+
∑
i∈[d]

∑
j∈[h−1]

E
[
2Mj|Rx(i)−Ry(i)|1{z∗(i)=j}

]
,

≤
∑
i∈[d]

E [2M0|Rx(i)−Ry(i)|]

+
∑
i∈[d]

∑
j∈[h−1]

E
[
2Mj|Rx(i)−Ry(i)|1{z∗(i)=j}

]
, (5.24)

where the first inequality follows from (5.23) in the proof of Lemma 5.6.1.

Next, noting that

1{z∗(i)=j} ≤ 1{|RX(i)|≥Mj−1} + 1{|RY (i)|≥Mj−1} almost surely,

an application of the Cauchy-Schwarz inequality yields

E
[
2Mj|Rx(i)−Ry(i)|1{z∗(i)=j}

]
≤ 2MjE

[
(Rx(i)−Ry(i))2

]1/2
E
[
(1{|RX(i)|≥Mj−1} + 1{|RY (i)|≥Mj−1})2

]1/2
≤ 2MjE

[
(Rx(i)−Ry(i))2

]1/2
(2P (|Rx(i)| ≥Mj−1) + 2P (|Ry(i)| ≥Mj−1))1/2

≤ 2MjE
[
(Rx(i)−Ry(i))2

]1/2 (
8e
−dM2

j−1
2

)1/2

, (5.25)

where the second ineqaulity uses (a+ b)2 ≤ 2a2 + 2b2 and the third uses subgaussianity of

Rx(i) and Ry(i).

Substituting the upper bound in (5.25) for the second term in the RHS of (5.24) and

using E [X] ≤ E [X2]1/2 for the first term, we get

E
[
‖QD,R(x)− x‖2

2

]
≤
∑
i∈[d]

E
[
|Rx(i)−Ry(i)|2

]1/22M0 +
∑

j∈[h−1]
2Mj ·

(
8e−

dM2
j−1
2

)1/2


≤
√
d · E [‖Rx−Ry‖2

2]
2M0 +

∑
j∈[h−1]

2Mj ·
(

8e−
dM2

j−1
2

)1/2


=
√
d · ‖x− y‖2

2

2M0 +
∑

j∈[h−1]
2Mj ·

(
8e−

dM2
j−1
2

)1/2
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=
√
d · ‖x− y‖2

2

2
√

6
d

+
∑

j∈[h−1]
2
√

6e∗j
d
·
(
8e−1.5e∗(j−1))

= 8
√

3 ·
√
‖x− y‖2

2

1 +
∑

j∈[h−1]
e−0.5e∗(j−1)


≤ 16

√
3 ·
√
‖x− y‖2

2,

where the second inequality uses the fact that ∑i ‖a‖1 ≤
√
d‖a‖2, the first and second

indentities follow from the fact that R is unitary transform and substituting for Mis, the

final inequality follows from the bound of 1 for ∑∞j=1 e
−0.5e∗(j−1), which, in turn, can seen

as follows

e−0.5e∗(j−1) = e−0.5 + e−0.5e + e−0.5ee +
∞∑
j=3

e−0.5e∗(j)

≤ e−0.5 + e−0.5e + e−0.5ee +
∞∑
j=3

e−0.5jee

≤ e−0.5 + e−0.5e + e−0.5ee + 1
eee − 1

≤ 1.

5.8.9 Proof of Lemma 5.6.3

Worst-case bias β(QWZ,u; ∆): It is straightforward to see that E [QWZ,u(x)] = x.

Worst-case MSE α(QWZ,u; ∆): We denote by Bx
ij and B

y
ij the bits

Bx
ij = 1{U(i,j)≤Rx(i)} and By

ij = 1{U(i,j)≤Ry(i)}.

Then, the quantized output can be stated as follows: noting that QWZ,u(x) = R−1x̂R where,

with z∗(i) denoting the smallest Mj such that the interval [−Mj,Mj] contains Rx(i) and
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Ry(i),

x̂R :=
 ∑
i∈{1,...,d}

∑
j∈{0,...,h−1}

2Mj ·
(
Bx
ij −B

y
ij

)
1{z∗(i)=j}1{i∈S} · ei +Ry

 ,
Since R is a unitary transform, the mean square error between QWZ,u(x) and x can be

bounded as in the proof of Lemma 5.6.2 as follows:

E
[
‖QWZ,u(x)− x‖2

2

]
= E

[
‖x̂R −Rx‖2

2

]
= E

[
‖x̂R −Rx‖2

2

]
=
∑
i∈[d]

E
[
x̂R(i)−Rx(i))2

]
=
∑
i∈[d]

∑
j∈[h]

E
[(

2Mj

(
Bx
ij −B

y
ij

)
1{i∈S} +Ry(i)−Rx(i)

)2
1{z∗(i)=j}

]

=
∑
i∈[d]

∑
j∈[h]

E
[
E
[(

2Mj

(
Bx
ij −B

y
ij

)
1{i∈S} +Ry(i)−Rx(i)

)2
| R
]
1{z∗(i)=j}

]

≤
∑
i∈[d]

∑
j∈[h]

E
[

2Mj

µ
· |Rx(i)−Ry(i)| · 1{z∗(i)=j}

]
,

where the inequality follows from similar calculations in the proof of Lemma 5.6.1. The

rest of the analysis proceeds as that in the proof of Lemma 5.6.2.

5.8.10 Proof of Lemma 5.7.2

For Q(x) as in (5.16), we have

Q(x) =
N∑
i=1

qi/N,

where qi for all i ∈ {1, . . . N} is an unbiased estimate of x and equals in distribution the

output of the RDAQ quantizer for an input x and side information y. Moreover, qis are

mutually independent conditioned on R. Therefore,

E
[
‖Q(x)− x‖2

2

]
= E

[
‖

N∑
i=1

qi
N
− x‖2

2

]

= E
[
E
[
‖

N∑
i=1

qi
N
− x‖2

2|R
]]
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= E
[
N∑
i=1

1
N2E

[
‖qi − x‖2

2|R
]]

≤ 16
√

3 ∆
N
,

where the third identity follows from the conditional independence of qis after conditioning

on R and the fact that qi is an unbiased estimate of x. The final inequality follows from

the fact that qi equals in distribution the output of the RDAQ quantizer and then using

Lemma 5.6.2.

5.9 Concluding Remarks

In this chapter, we saw that having access to side-information helps for the problem

of communication-constrained distributed mean estimation. Using this side-information

allows us to break the lower bounds for this problem in the no-side information setting.

We suspect that identifying side-information sources and then using them will improve

the performance in communication-constrained distributed learning scenarios.

Finally, our techniques could also be used to further exploit the correlation between

client data, as was shown in [57]. [57] built upon our work and showed that our pro-

posed quantizer RMQ could also be used to exploit the correlation between client data.

Specifically, [57] showed that when client data is “close”, the bound in Theorem 5.5.4

can be further improved. The key idea was to use the quantized data from clients as

side-information to decode other clients’ data.



Chapter 6

Revisiting Gaussian Rate-Distortion

6.1 Synopsis

We consider the problem of Gaussian rate-distortion in both the no side-information and

side-information case. In the no side-information case, as a by-product of the quantizers

designed in Chapter 3, we obtain an efficient quantizer for Gaussian vectors which attains

a rate very close to the Gaussian rate-distortion function and is, in fact, universal for

subgaussian input vectors. In the setting where the decoder has access to some side-

information, popularly known as the Wyner-Ziv problem, we leverage the quantizers

developed in Chapter 5 and obtain an efficient scheme in this setting. Once again, our

scheme is universal for subgaussian vectors.

The results presented in this chapter are from [69] and [66].

6.2 Introduction

We revisit the classic Gaussian rate-distortion problem. In the classic Gaussian rate-

distortion we seek to quantize a random Gaussian vector to within a specified mean

squared error while using as few bits per dimension as possible (cf. [18, 32]). Typical

fixed-length schemes for this problem draw on its duality with the channel coding problem

and modify channel codes to obtain coverings; see, for instance, [64,85,93]. However, these

169
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schemes may not be acceptable for two reasons: First, the resulting complexity is still too

high for hardware implementation; and second, the resulting schemes are not universal

and are tied to Gaussian distributions, specifically.

We also revisit the Gaussian Wyner-Ziv problem (cf. [74, 91]). Similar to the problem

described above, in the Gaussian Wyner-Ziv problem we seek to quantize a random

Gaussian vector to within a specified mean squared error while using as few bits per

dimension. Except, in this case, the decoder has access to a correlated Gaussian vector.

Practical codes for this problem can be found in [53,59,61,77,96]. However, once again,

these codes are computationally too expensive and the analysis is tied to the Gaussian

distribution.

For the Gaussian rate-distortion problem, we evaluate the performance of a subroutine

of RATQ, ATUQ, presented in Chapter 3. Similarly, for the Gaussian Wyner-Ziv problem,

we use the quantizer developed in the known ∆ setting in Chapter 5. Our schemes in

both settings have almost constant computational complexity per dimension and require

a minuscule excess rate over the optimal asymptotic rate. Moreover, unlike the classical

schemes for these problems, we do not require the distribution to be exactly Gaussian,

and subgaussianity suffices.

Organization

In Section 6.3, we describe the Gaussian rate-distortion problem, our scheme for this

problem which employs quantizers from Chapter 3, and its performance. In Section 6.4,

we describe the Gaussian Wyner-Ziv problem, our scheme for this problem which employs

quantizers from Chapter 5, and its performance.

6.3 The Gaussian rate-distortion problem

Consider a random vector X = [X(1), · · · , X(d)]T with iid components X(1), · · · , X(d)

generated from a zero-mean Gaussian distribution with variance σ2. For a pair (R,D) of

nonnegative numbers is an achiveable rate-distortion pair if we can find a quantizer Qd
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of precision dR and with mean square error E [‖X −Qd(X)‖2
2] ≤ dD. For D > 0, denote

by R(D) the infimum over all R such that (R,D) constitute an achievable rate-distortion

pair for all d sufficiently large. A well-known result in information theory characterizes

R(D) as follows (cf. [18]):

R(D) =


1
2 log σ2

D
if D ≤ σ2,

0 if D > σ2.

The function R(D) is called the Gaussian rate-distortion function.

Over the years, several constructions using error correcting codes and lattices have

evolved that attain the rate-distortion function, asymptotically for large d. In this section,

we show that a slight variant of ATUQ, too, attains a rate very close to the Gaussian

rate-distortion function, when applied to Gaussian random vectors.

Specifically, consider the quantizer Qat,I described earlier in (3.25). Recall that Qat,I

can be described by algorithm 3.2 and 3.3 with random matrix R replaced with I. That

is, we divide the input vector in dd/se subvectors and employ ATUQ to quantize them. In

fact, we will apply this quantizer not only to a Gaussian random vector, but any random

vector with subgaussian components; the components need not even be independent. Thus,

we show that our quantizer is almost optimal universally for all subgaussian random

vectors.

We set the parameters m, m0, h, s, and log(k + 1) of Qat,I as follows:

m = 3v, m0 = 2v ln s,

log h =
⌈
log

(
1 + ln∗

(
4 ln(8

√
2v/D)

3

))⌉
,

s = min{log h, d},

and log(k + 1) =
log

2 +
√

18v + 6v ln s
D

 . (6.1)

Theorem 6.3.1. Consider a random vector X taking values in Rd and with components

Xi, 1 ≤ i ≤ d such that each Xi is a centered subgaussian random variables with a
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variance factor v. Let Qd be the d-dimensional Qat,I with parameters as in (6.1). Then,

for d ≥ log h and D < v/4, Qd gets the mean square error less than dD using rate R

satisfying

R ≤ 1
2 log v

D
+O

(
log log log log∗ log

(
v

D

))
.

Proof. We split the overall mean square error into two terms and derive upper bounds for

each of them. Specifically, we have

1
d
· E

[
‖Xd −Qd(Xd)‖2

2

]
= 1
d
· E

∑
i∈[d]

(Xd(i)−Qd(Xd)(i))2
1{|Xd(i)|≤Mh−1}


+ 1
d
· E

∑
i∈[d]

(Xd(i)−Qd(Xd)(i))2
1{|Xd(i)|>Mh−1}

 .
The second term on the right-side above can be bounded as follows:

1
d
· E

∑
i∈[d]

(Xd(i)−Qd(Xd)(i))2
1{|Xd(i)|>Mh−1}

 = 1
d
· E

∑
i∈[d]

Xd(i)2
1{|Xd(i)|>Mh−1}


≤ E

[
Xd(1)4

]1/2
P (|Xd(1)| > Mh−1)1/2

≤ 4
√

2ve−
M2
h−1
4v ,

where the first inequality follows by the Cauchy-Schwarz inequality and the second follows

by Lemma 3.6.6. Note that M2
h−1 ≥ me∗(h−1) ≥ 3ve∗ ln∗(4 ln(8

√
2v/D)/3) = 4v ln(8

√
2v/D),

which with the previous bound leads to

1
d
· E

∑
i∈[d]

(Xd(i)−Qd(Xd)(i))2
1{|Xd(i)|>Mh−1}

 ≤ D

2 .

Furthermore, by Lemma 3.6.7 we have

1
d
· E

∑
i∈[d]

(Xd(i)−Qd(Xd)(i))2
1{|Xd(i)|≤Mh−1}

 ≤ 9v + 3v ln s
(k − 1)2 ≤ D

2 ,

where the last equality holds since k ≥ 1 +
√

18v+6v ln s
D

.

It remains to bound the rate. Note that the overall resolution used for the entire vector
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is

d log(k + 1) +
⌈
d

s

⌉
log h ≤ d

log
2 +

√
18v + 6v ln s

D

+ d+ log h

Therefore, for d ≥ log h and D < v/4, the proof is completed by bounding the rate R as

R ≤ log
(

2 +
√
v

D

√
18 + 6 ln log h

)
+ 3

≤ 1
2 log v

D
+ log

1 +

√√√√18 + 6 ln
⌈
log

(
1 + ln∗

(
4 ln(8

√
2v/D)

3

))⌉+ 3

≤ 1
2 log v

D
+O

(
log log log log∗ log v

D

)
.

We remark that the additional term is a small constant for reasonable values of the

parameters v and D. Note that our proposed quantizer just uses uniform quantizers with

different dynamic ranges, and yet is almost universally rate optimal.

6.4 The Gaussian Wyner-Ziv problem

Consider the random vectors X = [X(1), · · · , X(d)]T and Y = [Y (1), · · · , Y (d)]T , where

the coordinates {X(i), Y (i)}di=1 form an iid. sequence. Furthermore, for all i ∈ [d], let

X(i) = Y (i) + Z(i),

where Y (i) and Z(i) are independent and zero-mean Gaussian random variables with

variances σ2
y and σ2

z , respectively. The encoder has access X, which it quantizes and sends

to the decoder. The decoder, on the other hand, has access to Y (note that encoder does

not have acess to Y ) and can use it to decode X. A pair (R,D) of non-negative numbers

is an achievable rate-distortion pair if we can find a quantizer Qd of precision dR and

with mean square error E [‖Qd(X, Y )−X‖2
2] ≤ dD. For D ≥ 0, denote by RWZ(D) the

infimum over all R such that (R,D) constitute an achievable rate-distortion pair for all d
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sufficiently large. From1 [91], RWZ(D) can be characterized as follows:

RWZ(D) =


1
2 log σ2

z

D
if D ≤ σ2

z ,

0 if D > σ2
z .

Several constructions that involve computational heavy methods such as error correcting

codes and lattice encoding attain the rate-distortion function, asymptotically for large d.

In this section, we show that modulo quantizer with parameters set appropriately attains

a rate very close to the rate-distortion function RWZ(D). Moreover, we will show that this

rate can be achieved for arbitrary Y and Z, as long as Z is a zero mean subgaussian

random variable with variance factor σ2
z . Our proposed quantizer Qd(X, Y ) uses the

modulo quantizer to quantize X(i) with side information Y (i) at the decoder and the

parameter k,∆′ set as follows:

δ =
√
D/308, log k =

⌈
log

(
2 + (σz/

√
D)4

√
3 ln(2

√
77σz/

√
D)
)⌉

∆′ =
√

6(σ2
z) ln(σz/δ), ε = 2∆′/(k − 2), (6.2)

Theorem 6.4.1. Consider random vectors X, Y in Rd, where for all coordinates i ∈

{1, . . . , d}, we have

X(i) = Y (i) + Z(i),

and Z(i) is a centered subgaussian random variable with variance factor of σ2
z , independent

of Y (i). Let Qd(X, Y ) be the quantizer described above. Then, for D ≤ σ2

308 , we have MSE

less than dD using rate satisfying

R ≤ 1
2 log σ

2
z

D
+O

(
log log σ

2
z

D

)
.

1The model considered in [91] and perhaps the more popular Wyner-Ziv model is Y = X + Z.
Nevertheless, through MMSE rescaling this model can be converted to X = Y ′ + Z ′ (see, for instance,
[60]).
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Proof. The proof of this Theorem is similar to that of Lemma 5.5.2. We denote by

Q(X(i), Y (i)) the output of the modulo quantizer with side information Y (i) and parame-

ters k, ∆′ set as in (6.2). Then, we have

E
[
‖Qd(X, Y )−X‖2

]
≤

d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

]

≤
d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

1{|(X(i)−Y (i))|≤∆′}
]

+
d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

1{|(X(i)−Y (i))|≥∆′}
]
.

(6.3)

We bound the first term on the right-side in a similar manner as the bound in (5.20).

Specifically, under the event {|X(i)− Y (i)| ≤ ∆′}, we get by Lemma 5.5.1 that

|Y (i)−X(i)| ≤ ε = 2∆′
k − 2 , almost surely,

whereby

d∑
i=1

E
[
(Y (i)−X(i))2

1{|X(i)−Y (i)}|≤∆′
]
≤ d ε2. (6.4)

For the second term in the RHS note that X(i)− Y (i) is subgaussian with variance

factor σ2
z . Therefore, by proceeding in a similar manner as the derivation of (5.21) we get

d∑
i=1

E
[
(Q(X(i), Y (i))−X(i))2

1{|X(i)−Y (i)|≥∆′}
]

≤ 2
d∑
i=1

[
E
[
(Q(X(i), Y (i))− Y (i))2

1{|X(i)−Y (i)|≥∆′}
]

+ E
[
(Y (i)−X(i))2

1{|X(i)−Y (i)|≥∆′}
]]

≤ 2k2ε2
d∑
i=1

P (|X(i)− Y (i)| ≥ ∆′) + 2
d∑
i=1

E
[
(X(i)− Y (i))2

1{|X(i)−Y (i)|≥∆′}
]

≤ 4dk2ε2e−d∆′2/2σ2
z + 2

d∑
i=1

E
[
(X(i)− Y (i))2

1{|X(i)−Y (i)|≥∆′}
]
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≤ 4dk2ε2e−∆′2/2σ2
z + 4(2σ2

z + d∆′2)e−
∆′2

2σ2
z , (6.5)

where the second inequality follows upon noting from the description decoder of MQ in

Alg. 5.3 that |Q(X(i), Y (i))−Y (i)| ≤ εk almost surely for each i ∈ [d]; the third inequality

uses the fact that X(i)− Y (i) is sub-Gaussian with variance parameter σ2
z ; and the fourth

inequality is by Lemma 5.8.2.

Upon bounding the two terms on the right-side of (6.3) from above using (6.4), (6.5),

we obtain

E
[
‖Qd(X, Y )−X‖2

]
≤ dε2 + 4dk2ε2e−∆′2/2σ2

z + 4(2σ2
z + d∆′2)e−

∆′2

2σ2
z .

Note that the RHS in the upper bound above is precisely the same as in (5.22) with σ2
z

replacing ∆2/d.Therefore proceeding in the same manner as in (5.22), we get

E
[
‖Qd(X, Y )−X‖2

]
≤ 24 σ2

z

(k − 2)2 ln σz
δ

+ 154δ2.

Substituting the value of k and δ completes the proof.

6.5 Concluding Remarks

The key difference between our proposed quantizers and those proposed in the literature

is that we don’t focus on precisely matching the rate-distortion function. This allows

us to design computationally efficient quantizers, which still have a rate close to the

rate-distortion function.



Part III

Source Coding Schemes for

Timeliness
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Chapter 7

Minimum Age Source Codes

7.1 Synopsis

A transmitter observing a sequence of independent and identically distributed random

variables seeks to keep a receiver updated about its latest observations. The receiver need

not be apprised about each symbol seen by the transmitter, but needs to output a symbol

at each time instant t. If at time t the receiver outputs the symbol seen by the transmitter

at time U(t) ≤ t, the age of information at the receiver at time t is t− U(t). We study

the design of lossless source codes that enable transmission with minimum average age at

the receiver. We show that the asymptotic minimum average age can be attained up to a

constant gap by the Shannon codes for a tilted version of the original pmf generating the

symbols, which can be computed easily by solving an optimization problem. Furthermore,

we exhibit an example with alphabet X where Shannon codes for the original pmf incur

an asymptotic average age of a factor O(
√

log |X |) more than that achieved by our codes.

Underlying our prescription for optimal codes is a new variational formula for integer

moments of random variables, which may be of independent interest. Also, we discuss

possible extensions of our formulation to randomized schemes and to the erasure channel,

and include a treatment of the related problem of source coding for minimum average

queuing delay.

The results presented in this Chapter are from [65] and [?]
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7.2 Introduction

Timeliness is emerging as an important requirement for communication in cyber-physical

systems (CPS). Broadly, it refers to the requirement of having the latest information from

the transmitter available at the receiver in a timely fashion. It is important to distinguish

the requirement of timeliness from that of low delay transmission: The latter places a

constraint on the delay in transmission of each message, while timeliness is concerned about

how recent is the current information at the receiver. In particular, the instantaneous

staleness at the receiver is low if a message is received with low delay. However, the

instantaneous staleness increases linearly at the receiver until a subsequent message is

decoded successfully. A heuristically appealing metric that can capture the notion of

timeliness of information in a variety of applications, termed its age, was first used in [50]

for a setting involving queuing and link layer delays and was analyzed systematically for

a queuing model in the pioneering work [51]; see [10, 12, 42, 54, 87, 94] for a sampling of

subsequent developments in problems related to minimum age scheduling. In this paper,

we initiate a systematic study of the design of source codes with the goal of minimizing

the age of the information at the receiver.

As a motivating application, consider remote sensor data monitoring where at each

instant the sensor observes real-valued, time-series measurements. For concreteness, the

reader may consider voltage and current data recording using intelligent electronic devices

in a power distribution network. The sensor communicates to a center over a network to

enable fault detection and fault analysis. On the one hand, the communication protocol

and buffer constraints at the sensor limits the rate at which the sensor can send data

packets to the center. On the other hand, it is not very important for the center to get all

the packets from the sensor. Rather the center wants timely updates about the sensor

observations. In fact, when operating with cheap hardware with limited front-end buffers,

it is common to have observation values in the buffer overwritten as new recordings are

made even before the previous one waiting in the buffer has been picked-up for processing.

Our work focuses on data compression for such applications where there is no direct cost

of skipping packets and the interest is only in timely updates.
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7.2.1 Main Contributions

Specifically, we consider the problem of source coding where a transmitter receives symbols

generated from a known distribution and seeks to communicate them to a receiver in

a timely fashion.1 To that end, it encodes a symbol x to e(x) using a variable length

prefix-free code e. The coded sequence is then transmitted over a noiseless communication

channel that sends one bit per unit time. We restrict our treatment to a simple class of

deterministic2 update schemes, termed memoryless update schemes, where the transmitter

does not have have a buffer to store the symbols it has seen previously and simply sends

the next observed symbol once the channel is free.

Specifically, denoting the source alphabet by X , the transmitter observes a symbol

Xt ∈ X at each discrete time t. At time t = 1, the transmitter communicates the symbol

X1 = x1 by encoding it to codeword e(x1) of length `(x1) bits. This transmission requires

`(x1) channel uses and is received perfectly at the decoder at time 1 + `(x1). Since the

channel remains busy sending e(x1) for time instants 1 to `(x1), the transmitter cannot

send any new symbols during this period. At time t′ = 1 + `(x1), the transmitter observes

the symbol Xt′ = xt′ . Under a memoryless update scheme, the transmitter cannot store

the symbols seen during the time interval {2, . . . , `(x)} and communicates codeword e(xt′)

over the next `(xt′) channel uses, starting from the time instant t′ = 1 + `(x1). The

communication process continues repeatedly in this fashion.

We emphasize that under memoryless schemes, the source symbols generated and

observed by the transmitter while the channel is busy sending a previous symbol are simply

skipped. This skipping is only allowed when the channel is busy, and not at the will of the

encoder when the channel is free (see Section 7.7 for discussion on randomized schemes

that allow the transmitted to skip symbols even when channel is free). Furthermore, the

encoder need not indicate to the decoder that a symbol has been skipped using a special

symbol – the decoder can ascertain this from the received communication since the channel

is noiseless and compression is done using prefix-free codes.

1This assumption of known distribution is realized in practice by building a model for sensor data
offline, before initiating the live monitoring process.

2Our analysis of average age extends to randomized schemes as well; see Section 7.7.
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On the receiver side, at each instance t the decoder outputs a time U(t) and the symbol

XU(t) seen by the transmitter at time U(t). Thus, the age of information at the receiver at

time t is given by A(t) = t− U(t). We note that age of information measures timeliness

at the receiver. When the transmitter skips source symbols, U(t) remains unchanged at

the receiver and the age A(t) increases. Therefore, the age metric implicitly penalizes for

skipping symbols.

We illustrate the setup in Figure 7.1. In this example, the symbol X1 generated at time

t = 1 is encoded to a two-bit codeword e(X1) and received at the decoder at time t = 3

after two channel uses. At time t = 2, the transmitter skips symbol X2 since the channel

was busy sending X1 when it arrived. Further, the decoder retains U(t) = 0 since it has

not received any symbol. At time t = 3, the decoder receives the codeword e(X1), updates

U(3) = 1, and outputs the corresponding symbol X1. Thus, the age of information at the

receiver at time t = 3 is A(3) = 2. Since the channel becomes available at time t = 3,

the transmitter encodes the symbol X3 and transmits the one-bit codeword e(X3), which

is received after a single channel-use at time t = 4. At time t = 4, the decoder outputs

time U(4) = 3 with outputs the corresponding symbol X3, and the age of information at

the receiver is A(4) = 1. Once again, the channel becomes available at time t = 4 for the

transmitter. It encodes the current symbol X4 into the codeword e(X4) of length 3 bits

and sends e(X4) over the channel; e(X4) is received at time t = 7. The decoder retains

the output U(t) = 3 and XU(t) = X3 for times t ∈ {4, 5, 6}. At time t = 7, the decoder

outputs time U(7) = 4 and the corresponding symbol X4; the age of information at the

receiver is A(7) = 3.

Our goal in this paper is to design prefix-free codes for which the average age of the

memoryless scheme above is minimized; namely codes e that minimize

Ā(e) = lim
T→∞

1
T

T∑
t=1

A(t).

This formulation is apt for the timely update problem where the transmitter need not send

each update and strives only to reduce the average age of the information at the receiver.

Using a simple extension of the renewal reward theorem, we derive a closed form
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Figure 7.1: Illustration of a memoryless update scheme for the first 4 packets in the

source-queue.

formula for the asymptotic average age attained by a prefix-free code. Interestingly, this

formula is a rational function of the first and the second moment of the random codeword

length. Our main technical contribution in this paper is a variational formula for the

second moment of random variables that enables an algorithm for finding the code that

attains the minimum asymptotic average age up to a constant gap. The variational formula

is of independent interest and may be useful in other settings where such cost functions

arise; we point-out one such setting in Section 7.7. In fact, our prescribed prefix-free

code is a Shannon code3 for a tilted version of the original pmf. See (7.10) below for the

description of the tilted version; it can be computed by solving an optimization problem

entailing entropy maximization.

The formula for average age that we derive yields an O(log |X |) upper bound on the

minimum average age, attained by a fixed length code. We show that the same upper

bound of O(log |X |) holds for the average age of a Shannon code for the original distribution

as well. However, we exhibit an example where Shannon codes for the original distribution

have Ω(log |X |) age, while our aforementioned proposed code yields an average age of

O(
√

log |X |).

In addition to our basic formulation, we present a few extensions of our formulations

and other use cases for our proposed variational formula. Specifically, while we restrict to

3A Shannon code for P is a prefix-free code that assigns lengths `S(x) = d− logP (x)e to a symbol x
(cf. [18]).



Chapter 7. Minimum Age Source Codes 183

deterministic schemes for the most part, our analysis can be extended easily to analyze

randomized schemes where the encoder can choose to skip an available transmission slot

randomly. This idea of skipping transmission slots arises also in the recent work [87], albeit

in a slightly different context. We exhibit an example where a particular randomized

scheme outperforms every deterministic scheme. However, our analysis is limited and does

not completely clarify the role of randomization; for instance, it remains unclear for which

distributions can randomized schemes strictly outperform deterministic ones.

In another direction, we consider the case where the transmission channel is not error-

free, but can erase each bit with a known probability. Furthermore, an ACK-NACK

feedback indicating the success of transmission is available. Note that for the standard

transmission problem, the simple repeat-until-succeed scheme is optimal in this setting.

Our analysis can be used to design the optimal source code when we restrict our channel

coding to this simple scheme. However, the optimality of the ensuing source-channel

coding scheme remains unclear.

Finally, we study the related problem of source coding for ensuring minimum queuing

delays. This problem, introduced in [48], is closely related to the minimum age formu-

lation of this paper. Interestingly, our recipe for designing update codes with minimum

average age can be extended to this setting as well. However, here, too, our results are

somewhat unsatisfactory: Our approach only provides a solution to the real-relaxation

of the underlying integer-valued optimization problem and naive rounding-off is far from

optimal. Nonetheless, we have included these extensions in the current paper since they

indicate the rich potential for our proposed techniques and provide new formulations for

future research.

7.2.2 Prior Work

The problem of designing update codes with low average age is related to real-time source

coding (cf. [63]) where we seek to transmit a stream of data under strict delay bounds.

A related formulation has emerged in the control over communication network literature

(cf. [89]) where an observation is quantized and sent to an estimator/controller to enable
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control. Here, too, the requirement is that of communication under bounded delay.

An alternative formulation for minimum age source coding is considered in the recent

work [98]. Unlike our formulation, skipping of symbols is prohibited in [98]. Instead, the

authors consider fixed-to-variable length block codes and require that each coded symbol

be transmitted over a constant rate, noiseless bit-pipe. In this setting, an exact expression

for average age is not available, and the authors take recourse to an approximation for

average age. This approximate average age is then optimized numerically over a set of

prefix-free codes using the algorithm in [56]. The authors further reduce the computational

complexity of this algorithm by using the algorithm in [11].

A recent paper [97] extends this problem to include random arrival times of source

symbols and applies the algorithm from [56] for optimizing the cost function. Note that the

cost function optimized in [56] is similar to the approximate average age of [97,98], but with

one crucial difference: While the former is monotonic in both first and second moments

of random lengths, the latter is not. In absence of this monotonicity, the optimality

of the solution produced by algorithm in [56] is not guaranteed for the cost functions

in [97, 98]. In a related work [99], the same authors point-out that the average age can be

further reduced by allowing the encoder to dynamically control the block-length of the

fixed-to-variable length codes.

In contrast to [98], which is perhaps closest to our work, we derive an exact expression

for average age and rigorously establish the structural properties of the optimal solution

to the relaxed problem. In fact, our proposed minimum average age problem differs from

all these prior formulations since we need not send the entire stream and are allowed to

skip some symbols. In our applications of interest, such as that of real-time sensor data

monitoring outlined earlier, the allowed communication rates are much lower than the

rate at which data is generated. Thus, there is no hope of transmitting all the data at

bounded delay, as mandated by the formulations available hitherto. Nonetheless, our

setting is related closely to that in [98] and provides a complementary formulation for age

optimal source coding. We note that our focus is on settings where the alphabet size of the

streaming symbols is large. In such settings, the average age for any memoryless update
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scheme would be much larger than a small constant. Therefore, it suffices to establish

optimality up to small additive constants.

Some preliminaries

We recall the notions of Shannon lengths and Shannon codes, which will be used throughout.

A source code is called prefix-free if no codeword is a prefix of another.

Definition 7.2.1 (Shannon lengths and Shannon codes for P ). For a pmf P on an alphabet

X , the real-values `(x) = − logP (x), x ∈ X , are called the Shannon lengths for the pmf P .

A prefix-free source code for P with codeword lengths `(x) = d− logP (x)e , ∀x ∈ X , is

called a Shannon code4 for the pmf P .

Organization

The next section contains a formal description of our setting and a formula for asymptotic

average age of a code. Our main technical tool is presented in Section 7.4, and we apply it

to the minimum average age code design problem in Section 7.5. Numerical evaluations

of our proposed scheme for the family of Zipf distributions is presented in Section 7.6.

Section 7.7 contains a discussion on extensions to randomized schemes and erasure channel,

along with a treatment of source codes for minimum average waiting time. We provide all

the proofs in the final section.

7.3 Average age for memoryless update schemes

Consider a discrete-time system in which at every time instant t, a transmitter observes a

symbol Xt generated from a finite alphabet X with pmf P . We assume that the sequence

{Xt}∞t=1 is independent and identically distributed (iid). The transmitter has a noiseless

communication channel at its disposal over which it can transmit one bit per unit time.

A memoryless update scheme consists of a prefix-free code, represented by its encoder

4There can be different codes with codeword lengths required in our definition of a Shannon code. We
simply refer to all of them as a Shannon code, since any of these can serve our purpose in this paper.
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Figure 7.2: A sample path of U(t), A(t) corresponding to Figure 7.1 starting with U(1) = 0.

e : X → {0, 1}∗, and a decoder which at each time instant t declares a time index U(t) ≤ t

and an estimate X̂U(t) for the symbol XU(t) that was observed by the encoder at time U(t).

We focus on error-free schemes and require X̂U(t) to equal XU(t) with probability 1.

In a memoryless update scheme, once the encoder starts communicating a symbol

x, encoded as e(x), it only picks up the next symbol once all the bits in e(x) have been

transmitted successfully to the receiver. The time index U(t) is updated to a new value

only upon receiving all the encoded bits for the current symbol. That is, if the transmission

of a symbol is completed at time t− 1, the encoder will start transmitting e(Xt) in the

next instant. Moreover, if the final bit of e(Xt) is received at time t′, U(t′) is updated

to t. A typical sample path for U(t) is given in Figure 7.2. The age A(t) of the symbol

available at the receiver at time t is given by

A(t) = t− U(t).

A more general treatment can allow errors in estimates of XU(t) as well as encoders with
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memory, but we limit ourselves to the simple error-free and memoryless setting in this

paper.

We are interested in designing prefix-free codes e that minimize the average age for

the memoryless update scheme described above.

Definition 7.3.1. The average age for a prefix-free code e, denoted Ā(e), is given by

Ā(e) = lim sup
T→∞

1
T

T∑
t=1

(t− U(t)).

We remark that Ā(e) can be viewed as the average area under the curve of A(t) (w.r.t.

t). Note that Ā(e) is random variable, nevertheless we will prove that this random

variable is a constant almost surely. For any symbol x ∈ X , we denote the length of the

codeword e(x) by `(x). Let X ∈ X be a random symbol with pmf P over the alphabet X ,

then the length of the random codeword e(X) is denoted by

L = `(X).

The result below uses a simple extension of the classical renewal reward theorem (cf. [81])

to provide a closed form expression for Ā(e) in terms of the first and the second moments

of L.

Theorem 7.3.2. Consider a random variable X with pmf P on X . For a prefix-free code

e, the average age Ā(e) is given by

Ā(e) = E [L] + E [L2]
2E [L] −

1
2 a.s. . (7.1)

The proof is deferred to Section 7.8.1.

Denoting by Ā∗ the minimum average age over all prefix-free codes e, as a corollary of

the characterization above, we can obtain the following bounds for Ā∗.
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Corollary 7.3.3. For any pmf P over X , the optimal average age Ā∗ is bounded as

3
2H(P )− 1

2 ≤ Ā∗ ≤ 3
2 log |X |+ 1.

The proof of lower bound simply uses Jensen’s inequality E [L2] ≥ E [L]2 and the fact

that E [L] ≥ H(P ) for a prefix free code; the upper bound is obtained by using codewords

of constant length dlog |X |e.

Note that the lengths `(x) are required to be nonnegative integers. However, for any

set of real-valued lengths `(x) ≥ 0, we can obtain integer-valued lengths by using the

rounded-off values d`(x)e. Unlike the average length cost, the average age cost function

identified in (7.1) is not an increasing function of the lengths. Nevertheless, by (7.1), the

average age Ā(e) achieved when we use the rounded-off values can be bounded as follows:

Denoting L̄ := d`(X)e, we have

E
[
L̄
]

+
E
[
L̄2
]

2E
[
L̄
] − 1

2 ≤ E [L+ 1] + E [(L+ 1)2]
2E [L] − 1

2

≤ E [L] + E [L2]
2E [L] + 2E [L]

2E [L]

+ 1
2E [L] + 1

2

≤ E [L] + E [L2]
2E [L] + 2. (7.2)

Accordingly, in our treatment below we shall ignore the integer constraints and allow

nonnegative real-valued length assignments.

Returning now to the bound of Corollary 7.3.3, the upper and lower bounds differ only

by a constant 1.5 when P is uniform. In view of the foregoing discussion, Shannon codes

for a uniform distribution attain the minimum average age up to a constant gap. The next

result gives an upper bound on average age for Shannon codes for an arbitrary P on X .

Lemma 7.3.4. Given a pmf P on X , a Shannon code e for P has average age A(e) at

most O(log |X |).

Proof. Let `(X) denote the lengths of Shannon code corresponding to P (see Definition
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7.2.1). We establish the claim using the standard bound H(P ′) ≤ log |X | for an appropri-

ately chosen pmf P ′ on X . Specifically, for the tilting of P given by P ′(x) ∝ `(x)P (x), we

get

log |X | ≥
∑
x∈X

P (x)`(x)
E [`(X)] log E [`(X)]

P (x)`(x)

=
∑
x∈X

P (x)`(x)(− logP (x))
E [`(X)]

−
∑
x∈X

P (x)`(x)
E [`(X)] log `(x)

E [`(X)]

≥
∑
x∈X

P (x)`(x)(− logP (x))
E [`(X)]

−
∑

x∈X :`(x)≥E[`(X)]

P (x)`(x)
E [`(X)] log `(x)

E [`(X)] .

Using − logP (x) ≥ `(x)− 1 and ln x ≤ x2−1
2x for x ≥ 1, we obtain

log |X | ≥ E [`2(X)]
E [`(X)] − 1

− 1
2 ln 2 ·

∑
x∈X :`(x)≥E[`(X)]

P (x)
(

`2(x)
E [`(X)]2

− 1
)

≥ E [`2(X)]
E [`(X)] − 1

− 1
2 ln 2 ·

∑
x∈X :`(x)≥E[`(X)]

P (x) · `2(x)
E [`(X)]2

≥ E [`2(X)]
E [`(X)] − 1− 1

2 ln 2 ·
∑
x∈X

P (x)`2(x)
E [`(X)]2

≥ E [`2(X)]
E [`(X)] − 1− 1

2 ln 2 ·
∑
x∈X

P (x)`2(x)
E [`(X)]

≥
(

1− 1
2 ln 2

)
· E [`2(X)]
E [`(X)] − 1,

where the second-last inequality follows from the fact that E [`2(X)] ≥ E [`(X)], which

in turn follows from the fact that `(X) ≥ 1. The proof is completed by rearranging the

terms.
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It is of interest to examine if, in general, a Shannon code for P itself has average

age close to Ā∗, as was the case for the uniform distribution. In fact, it is not the case.

Below we exhibit a pmf P where the average age of a Shannon code for P is Ω(log |X |),

namely the previous bound is tight, and yet a Shannon code for another distribution (when

evaluated for P ) has an average age of only O(
√

log |X |).

Example 7.3.5. Consider X = {0, ..., 2n} and a pmf P on X given by

P (x) =


1− 1

n
, x = 0

1
n2n , x ∈ {1, . . . , 2n}.

Using (7.1), the average age Ā(eP ) for a Shannon code for P can be seen to satisfy

Ā(eP ) ≈ (n+ 2 log n)/2. On the other hand, if we instead use a Shannon code for the pmf

Q given by

Q(x) =


1

2
√
n , x = 0

1−2−
√
n

2n , x ∈ {1, . . . , 2n},

we get E [L] ≈
√
n and EL2 ≈ 2n, whereby Ā(eQ) ≈ 2

√
n, just O(

√
log |X |).

Thus, one needs to look beyond the standard Shannon codes for P to find codes with

minimum average age. Interestingly, we show that Shannon codes for a tilted version of

P attain the optimal asymptotic average age (up to the constant loss of at most 2.5 bits

incurred by rounding-off lengths to integers). In particular, for the example above, our

proposed optimal codes will have an average age of only O(
√

log |X |) in comparison to

Ω(log |X |) of Shannon codes for P .

A key technical tool in design of our codes is a variational formula that will allow

us to linearize the cost function in (7.1), thereby rendering Shannon codes for a tilted

distribution optimal. We present this in the next section.
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7.4 A variational formula for p-norm

The expression for average age identified in Theorem 7.3.2 involves the second moment

of the random codeword length L. This is in contrast to the traditional variable length

source coding problem where the goal is to minimize the average codeword length E [L].

For this standard cost, Shannon codes which assign a codeword of length d− logP (x)e to

the symbol x come within 1-bit of the optimal cost (see, for instance, [18]). A variant of

this standard problem was studied in [16], where the goal was to minimize the log-moment

generating function logE [exp(λL)]. A different approach for solving this problem is given

in [40] where the Gibbs variational principle is used to linearize the nonlinear cost function

logE [exp(λL)]. The next result provides the necessary variational formula to extend

the aforementioned approach to another nonlinear function, namely ‖L‖p :=(E [Lp])
1
p for

p > 1.

We believe that our result is of independent interest, and present it in a general

form that applies to general distributions (and not just the discrete random variables

considered in this paper). To state the general result, we recall a basic notation from

probability theory. For two probability measures P and Q on the same probability space

such that Q is absolutely continuous with respect to P , denoted Q � P , denote by dQ
dP

the Radon-Nikodym derivative of Q with respect to P . Note that dQ
dP

, too, is a random

variable measurable with respect to the underlying sigma-algebra. A reader not familiar

with these notions can see a standard textbook on probability theory for definitions. For

the discrete case, Q� P corresponds to the condition5 supp(Q) ⊂ supp(P ) and dQ
dP

equals

the ratio of the pmfs of the distributions Q and P .

Note that expectations are always taken with respect to the reference measure. In

particular, the expectations without any subscript in Theorem 7.4.1 below and its proof

denote the expectation with respect to P , which is the reference measure in this case. The

expectation in Remark 34 denotes the expectation with respect to R.

Theorem 7.4.1. For a real-valued random variable X with distribution P and p ≥ 1 such

5supp(P ) denotes the support of distribution P over an alphabet X , i.e., supp(P ) := {x ∈ X : P (x) >
0}. .
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that ‖X‖p <∞, we have

‖X‖p = max
Q�P

E

(dQ
dP

) 1
p′

|X|

 ,
where p′ = p/(p− 1) is the Hölder conjugate of p.

Proof. For Q� P and 0 < α 6= 1, let Dα(P,Q) denote the Rényi divergence of order α

between distributions Q and P (see [79]), defined by

Dα(P,Q) := 1
α− 1 logE

[(
dQ

dP

)α]
.

It is well-known that Dα(P,Q) ≥ 0 with equality if and only if P = Q. Consider the

probability measure Pp � P defined by

dPp
dP

:= 1
‖X‖pp

· |X|p.

Then, for α = 1/p′,

0 ≤ Dα(Pp, Q) = 1
α− 1 logE

(dQ
dP

)α (
dPp
dP

)1−α


= −p logE
[(
dQ

dP

)α
|X|

]
+ p log ‖X‖p,

where the previous equality holds since p(1− α) = 1. Thus, for every Q� P ,

E
[(
dQ

dP

)α
|X|

]
≤ ‖X‖p,

with equality if and only if Pp = Q.

Remark 34. The given definition of Rényi divergence restricts Theorem 7.4.1 to the case

P (X = 0) = 0. To remove this restriction, the following general definition of Rényi
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divergence with respect to a common measure can be used: For all Q,P � R, define

Dα(P,Q) := 1
α− 1 logE

(dQ
dR

)α (
dP

dR

)1−α
 .

The proof then follows by using the positivity of Dα(Pp, Q), then by proceeding in the

same manner as the previous proof.

Returning to the problem at hand, we apply the variational formula above to the L2

norm of a discrete random variable. We highlight this special case separately below.

Corollary 7.4.2. For a discrete random variable X with a pmf P such that ‖X‖2 <∞,

we have

‖X‖2 = max
supp(Q)⊂supp(P )

∑
x∈X

√
Q(x)P (x)x,

where supp(P ) denotes the support-set of the distribution P .

7.5 Prefix-free codes with minimum average age

We now present a recipe for designing prefix-free codes with minimum average age. By

Theorem 7.3.2, we seek prefix-free codes that minimize the cost

E [L] + E [L2]
2E [L] , (7.3)

where L = `(X) forX with pmf P . Recall that a prefix-free code with lengths {`(x)∈ N, x ∈

X} exists if and only if lengths satisfy Kraft’s inequality (cf. [18]), i.e., if and only if

∑
x∈X

2−`(x) ≤ 1. (7.4)

Following the discussion leading to (7.2), we relax the integral constraints for `(x) and

search over all real-valued `(x) ≥ 0 satisfying (7.4). Specifically, we solve the relaxed

optimization problem

min
`∈Λ

E [L] + E [L2]
2E [L] , (7.5)
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where

Λ =
{
` ∈ R|X | :

∑
x∈X

2−`(x) ≤ 1, `(x) ≥ 0 ∀x ∈ X
}
.

As noticed in (7.2), this can incur a loss of only a constant. A key challenge in minimizing

(7.3) is that it is nonlinear. We linearize this cost as follows:

1. Note first the identity below, which is obtained by maximizing the expression on the

right-side:

E [L] + E [L2]
2E [L] = max

z≥0

(
1− z2

2

)
E [L] + z‖L‖2. (7.6)

2. Then, Corollary 7.4.2 yields

‖L‖2 = max
Q�P

∑
x∈X

√
Q(x)P (x)`(x),

which further leads to

E [L] + E [L2]
2E [L]

= max
z≥0

(
1− z2

2

)
E [L] + zmax

Q�P

∑
x∈X

√
Q(x)P (x)`(x)

= max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x),

where

gz,Q,P (x) :=
(

1− z2

2

)
P (x) + z

√
Q(x)P (x). (7.7)

As remarked earlier, as the source distribution P is discrete, the constraint Q � P

simplifies to supp(Q) ⊂ supp(P ). Thus, our goal is to identify the minimizer `∗ that

achieves

∆∗(P ) = min
`∈Λ

max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x). (7.8)
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The result below captures our main observation and facilitates the computation of

optimal lengths attaining the minmax cost ∆∗(P ).

Theorem 7.5.1 (Structure of optimal codes). The optimal minmax cost ∆∗(P ) in (7.8)

satisfies

∆∗(P ) = max
z≥0

max
Q�P

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x)

= max
z≥0,Q�P,

(z,Q)∈G

∑
x∈X

gz,Q,P (x) log
∑
x′∈X gz,Q,P (x′)
gz,Q,P (x) , (7.9)

where

G := {z ≥ 0, Q ∈ R|X | : gz,Q,P (x) ≥ 0 ∀x ∈ X}.

Furthermore, if (z∗, Q∗) is the maximizer of the right-side of (7.9), then the minmax cost

(7.8) is achieved uniquely by the Shannon lengths6 for the pmf P ∗ on X given by

P ∗(x) = gz∗,Q∗,P (x)∑
x′∈X gz∗,Q∗,P (x′) . (7.10)

Thus, our prescription for design of source codes is simple: Use a Shannon code for P ∗

instead of P . To compute P ∗, we need to solve the optimization problem in (7.9). Note

that is unclear a priori that the minimum average age for the problem in (7.5) would

correspond to Shannon lengths for some pmf since our cost function is not monotonic in

expected length, whereby the optimal solution may not satisfy Kraft’s inequality with

equality. Nonetheless, we show that the Shannon lengths − logP ∗(x) are optimal for the

relaxed problem given by (7.5).

We note that our formal result above only provides a structural result for the optimal

solution. But we believe that this structural result leads to a recipe to design practical

algorithms for finding the optimal solution; we describe this recipe below. Specifically,

note that the resulting optimization problem for finding P ∗ is one of entropy maximization

6Recall that Shannon lengths for the pmf P on X are given by `(x) = − logP (x), x ∈ X , and are not
necessarily integers.
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for which several heuristic recipes are available. Furthermore, we note the following

structural simplification for the optimal solution which shows that if P (x) = P (y), then

P ∗(x) = P ∗(y) must hold as well; the proof is relegated to the Appendix. Thus, the

dimension of the optimization problem (7.9) can be reduced from |X |+ 1 to MP + 1, where

MP denotes the number of distinct elements in the probability multiset {P (x) : x ∈ X}.

Let A1 · · ·AMP
denote the partition of X such that

P (x) = P (y) ∀x, y ∈ Ai, ∀i ∈ [MP ].

Lemma 7.5.2. Suppose that Q∗ is an optimal Q for (7.9). Then, Q∗ must satisfy

Q∗(x) = Q∗(y) ∀x, y ∈ Ai, ∀i ∈ [MP ]. (7.11)

In proving Lemma 7.5.2, we use the fact that the cost function in (7.9) is concave in

Q for each fixed z and is concave in z for each fixed Q (see Lemma 7.8.6). However, it

may not be jointly concave in (z,Q). Nevertheless, we apply standard numerical packages

to optimize it in the next section to quantify the performance of our proposed codes and

compare it with Shannon codes for the original distribution P .

7.6 Numerical results for Zipf distribution

We program all our optimization problems in AMPL [31] and solve it using SNOPT [36] and

CONOPT [22] solvers. Specifically, for the pmfs P we consider in this section, we solve the

optimization problem given by (7.9) to find the corresponding optimal (z∗, Q∗). In order

to check if we have indeed found the optimal (z∗, Q∗), we once again use Theorem 7.5.1.

In particular, it follows from Theorem 7.5.1 that the necessary and sufficient condition

for a particular (z,Q) to be the optimal solution is that the value of the maximization

problem (7.9) at (z,Q) equals

E [− logP ′(X)] + E [(logP ′(X))2]
2E [− logP ′(X)] ,
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where

P ′(X) = gz,Q,P (x)∑
x′∈X gz,Q,P (x′) ;

in all our numerical evaluations, the solution found by the solver satisfies this condition,

which establishes its optimality.

We now illustrate our recipe for construction of prefix-free codes that yield minimum

average age for memoryless update schemes when P is a Zipf distribution. Specifically,

we illustrate our qualitative results using the Zipf(s,N) distribution with alphabet X =

{1, · · · , N} and given by

P (i) = i−s∑N
j=1 j

−s , 1 ≤ i ≤ N.

Heuristically, the average age formula (7.1) suggests that the differences between the

performances of a code under average codeword length cost and the average age cost will

be the most for “peaky distribution,” namely for distributions with heavy elements. The

parameter s of the Zipf distribution allows us to vary from a uniform distribution to a

“peaky distribution,” making this family apt for our numerical study. Indeed, our numerical

results confirm that our proposed scheme outperforms a Shannon code for P when the

parameter s is high; see Figure 7.3. When we round-off real lengths to integers, the gains

are subsided but still exist. Further, when the parameter s is close to 0, Shannon codes

for P are close to optimal. With increase in s, the gain of our proposed schemes over

Shannon codes starts becoming more prominent. As an aside, Figure 7.3 also provides an

illustration of the non-monotonic nature of the average age function with respect to code

lengths.

The distribution P ∗ we use to construct our codes seems to be a flattened version of the

original Zipf distribution; we illustrate the two distributions for Zipf(1, 8) in Figure 7.4.

As we see in Figure 7.4, P ∗ and P are very close in this case. Indeed, we illustrate in

Figure 7.5 that the average length E [L] when Shannon lengths − logP (x) are used and

when − logP ∗(x) are used are very close7. In Figure 7.5, we note the dependence of

7The difference of these two average lengths (averaged w.r.t. P ) is given by the Kullback-Leibler
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Figure 7.3: Comparison of proposed codes and Shannon codes for Zipf(s, 256) with varying

s. The average age is computed using real-valued lengths as well as lengths rounded-off to

integer values.

average age on the entropy of the underlying distribution P . As expected, average age

increases as H(P ) increases.

Thus, while Example 7.3.5 illustrated high gains of the proposed code over Shan-

non codes for P , for the specific case of Zipf distributions the gains may not be large.

Characterizing this gain for any given distribution is a direction for future research.

7.7 Extensions

7.7.1 Randomization for Timely Updates

We have restricted our treatment to deterministic memoryless update schemes. A natural

extension to randomized memoryless schemes would entail allowing the encoder to make a

randomized decision to skip transmission of a symbol even when the channel is free (we

can allocate a special symbol ∅ to signify no transmission to the receiver). Specifically,

assume that we transmit the symbol ∅ using a codeword of length `(∅) when we choose

divergence D(P‖P ∗); see [18].
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Figure 7.4: The pmf for P ∗ and P for Zipf(1, 8).

not to transmit the observed symbol x ∈ X . Denoting by θ(x) the probability with which

the encoder will transmit the symbol x, the average age Ā(e, θ) for the randomized scheme

is given by

Ā(e, θ) = E [L(θ)]
E [θ(X)] + E [L(θ)2]

2E [L(θ)] −
1
2 , (7.12)

where the random variable L(θ) is defined as follows:

L(θ) :=


`(x), w.p P (x)θ(x)

`(∅), w.p 1− E [θ(X)] .
(7.13)

Note that the expression in (7.12) is a slight generalization of Theorem 7.3.2 and is derived

in Section 7.8.1.

Example 7.7.1. Consider X = {1, ..., 64} and the following pmf;

P (x) =


1/4, x ∈ {1, . . . , 3},

1/244, x ∈ {4, . . . , 64}.

Since H(P ) = 3.483, Corollary 7.3.3 yields that the average age of the deterministic

memoryless update scheme is bounded below by 4.724. Next, consider a randomized

update scheme with θ(x) = 1 for x ∈ {1, 2, 3} and 0 otherwise. For this choice, the
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Figure 7.5: Average age and average length for our update codes as a function of H(P )

for Zipf(s, 256) with s varying from 0 to 5 at step sizes of 0.5.

effective pmf Pθ is uniformly distributed over the symbols {1, 2, 3} ∪ {φ}. Thus, the

optimal length assignment for this case assigns `(x) = 2 to all the symbols and the average

age equals 3.17, which is less than the lower bound of 4.724 for the deterministic scheme.

The idea of skipping available transmission opportunities, i.e., not transmitting even

when the channel is free, to minimize average age appears in the recent work [87] as

well, albeit in a slightly different setting. Heuristically, the randomization scheme above

operates as we expect – it ignores the rare symbols which will require longer codeword

lengths. In practice, however, these rare symbols might be the ones we are interested in.

But keep in mind that our prescribed solution only promises to minimize the average age

and does not pay heed to any other consideration. Furthermore, for a given randomization

vector θ, we can establish a result similar to Theorem 7.5.1. This will lead to the design

of almost optimal source codes for a given randomization vector θ. However, the joint

optimality over the class of randomized schemes and source coding schemes is still unclear.

In a more comprehensive treatment, one can study the design of update codes with

other constraints imposed. We foresee the use of Corollary 7.4.2 in these more general

settings as well. In another direction, we can consider the extension of our results to the
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case when the transmission channel is an erasure channel with probability of erasure ε. If

we assume the availability of perfect feedback, a natural model for the link or higher layer

in a network, and restrict to simple repetition schemes where the transmitter keeps on

transmitting the coded symbol until it is received, our formula for average age extends with

(roughly) an additional multiplicative factor of 1/(1− ε). Formally the average age over an

erasure channel with ε probability of erasure; a source code e, along with a randomization

vector θ and a repetition channel-coding scheme yields the following average age

Āε(e, θ) = 1
1− ε · Ā(e, θ) + ε

2(1− ε) .

However, the optimality of repetition scheme is unclear, and the general problem constitutes

a new formulation in joint-source channel coding which is of interest for future research.

7.7.2 Source Coding for Minimum Queuing Delay

Next, we point out a use case for Corollary 7.4.2 in a minimum queuing delay problem

introduced in [48]. The setting is closely related to our minimum average age update

formulation with two differences: First, the arrival process of source symbols is a Poisson

process of rate λ; and second, the encoder is not allowed to skip source symbols. Instead,

each symbol is encoded and scheduled for transmission in a first-come-first-serve (FCFS)

queue. Our goal is to design a source code that minimizes the average queuing delay

encountered by the source sequence. Formally, the symbols {Xn}∞n=1 are generated iid

from a finite alphabet X , using a common pmf P . Every incoming symbol x is encoded

as e(x) using a prefix-free code specified by the encoder mapping e : X → {0, 1}∗, and

the bit string e(x) is placed in a queue. The queue schedules bits for transmission using a

FCFS policy. Each bit in the queue is transmitted over a noiseless communication channel.

Denote by An the time of successful arrival of the nth symbol. Also, denote by Dn the

time instant of successful reception of the nth symbol Xn. That is, Dn is the instant at

which the last bit of e(Xn) is received8. The delay for the nth symbol is given by Dn−An;

8Note both An and Dn may not be integer valued, unlike the age setup.
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see Figure 7.6 for an illustration.
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Figure 7.6: Figure describes a typical sample-path for transmission of encoded symbols

over a FCFS queuing system. Symbol X1 arrives at some time instant 1, it is encoded

and transmitted over the channel. Recall that unlike the slotted setup of Figure 7.1, the

setup here is that of continuous time with Poisson arrivals. It is decoded at time instant 4.

Symbol X2 arrives in between time instants 2 and 3, and is placed in the queue, as the

channel is busy transmitting X1. As soon as the channel becomes free at time instant 4,

an encoded version of X2 is transmitted over it. Symbol X3 arrives when the channel is

free and is transmitted immediately.

Thus, if `(x) is the length of the encoded symbol e(x) in bits, then the number of

channel uses to transmit this symbol is `(x), whereby the service time of the nth arriving

symbol is given by Sn = `(Xn). Since {Xn}∞n=1 is iid and the encoder mapping e is fixed,

the sequence (Sn)n∈N, too, is iid with common mean E [L]. Therefore, the resulting queue

is an M/G/1 queuing system with Poisson arrivals of rate λ and iid service times (Sn)n∈N.

Note that this queue will be stable only if λE [Sn] = λE [L] < 1.

We are interested in designing prefix-free codes e that minimize the average waiting

time defined as follows:

Definition 7.7.2. The average waiting time D(e) of a source code e is given by

D(e) := lim sup
N→∞

1
N

N∑
n=1

E [Dn − An] ,

where the expectation is over source symbol realizations {Xn}∞n=1 and arrival instants
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{An}n∈N.

We seek prefix-free codes e with the least possible average waiting time D(e). In fact,

a closed-form expression for D(e) was obtained in [48]. For clarity of exposition, we denote

the load for the queuing system above for a fixed λ by ρ(L):=λE [L]. Since ρ(L) < 1 for

the queue to be stable, the average codeword length E [L] must be strictly less than a

threshold Lth:= E[L]
ρ(L) = 1

λ
for the queue to be stable.

Theorem 7.7.3 ([48]). Consider a random variable X with pmf P and a source code e

which assigns a bit sequence of length `(x) to x ∈ X . Let L denote the random variable

`(X). Then, the average waiting time D(e) for e is given by

D(e) =


E[L2]

2(Lth−E[L]) + E [L] , E [L] < Lth,

∞, E [L] ≥ Lth.

(7.14)

Thus, the problem of designing source codes with minimum average waiting time

reduces to that of designing a prefix-free code that minimizes the cost in (7.14). This

problem was first considered in [48]. In fact, it was noted in [48, Chapter 1, Section 3]

that codes which minimize the first moment are robust for (7.14). We will justify this

empirical observation in Corollary 7.7.5. However, optimal codes can differ from Shannon

codes for P . Indeed, an algorithm for finding the optimal length assignments `(x), x ∈ X ,

for a prefix-free code that minimizes D̄(e) was presented in [56] and the optimal code can

be seen to outperform Shannon codes for P . While this algorithm has complexity that is

polynomial in the alphabet size, it is computationally expensive for large alphabet sizes –

the case of interest for our problem.

Interestingly, the cost function in (7.14) resembles closely the expression we obtained

for asymptotic average age and our recipe used to design minimum average age codes can

be applied to design minimum average delay codes as well. The underlying optimization

problem can be solved numerically rather quickly, much faster than the optimization in [56].

However, as before, our procedure can only handle the real-relaxation of the underlying

optimization problem, and unlike the previous case, naive rounding-off to integer lengths
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yields a sub-optimal solution when (1− ρ(L)) is small. Nonetheless, the minimum average

waiting time computed using our recipe serves as an easily computable lower bound for

the optimal D(e). In fact, we observe in our numerical simulations that the resulting lower

bound is rather close to the optimal cost obtained using [56].

Now, we describe the modification of our recipe to design codes with E [L] < Lth that

minimize the cost

‖L‖1 + ‖L‖2
2

2(Lth − ‖L‖1) , (7.15)

where L = `(X) for X with pmf P . As before, we first obtain a variational form of (7.15)

which entails a linear function of lengths. Specifically, we have the following steps.

1. First, we obtain a polynomial form from the rational function:

‖L‖2
2

2(Lth − ‖L‖1) = max
z≥0

z‖L‖2 −
z2

2 (Lth − ‖L‖1).

2. Then, Corollary 7.4.2 yields that the cost in (7.15) equals

max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x)− z2

2 Lth

where the gz,Q,P (x) is defined as

gz,Q,P (x) :=
(

1 + z2

2

)
P (x) + z

√
Q(x)P (x).

Thus, our goal reduces to identifying the minimizer `∗ ∈ Λ that achieves

∆∗(P ) = min
`∈Λ,

E[L]<Lth

max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x)− z2

2 Lth. (7.16)

The result below is the counterpart of Theorem 7.5.1 for minimum delay source codes and

is proved in Section 7.8.3.
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Theorem 7.7.4. Under the condition

H(X) + log(1 + 1/
√

2) < Lth, (7.17)

the optimal minmax cost ∆∗(P ) in (7.16) satisfies

∆∗(P ) = max
z≥0

max
Q�P

min
`∈Λ,

E[L]<Lth

∑
x∈X

gz,Q,P (x)`(x)− z2

2 Lth

= max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x) log
∑
x′∈X gz,Q,P (x′)
gz,Q,P (x)

− z2

2 Lth. (7.18)

Furthermore, if (z∗, Q∗) is the maximizer of the right-side of (7.18), then the minmax cost

(7.16) is achieved uniquely by Shannon lengths for pmf P ∗ on X given by

P ∗(x) = gz,Q∗,P (x)∑
x′∈X gz∗,Q∗,P (x′) .

We remark that (7.14) implies that H(X) < Lth is essential for the existence of a prefix

free source coding scheme with finite average delay. Thus, the condition H(X) + log(1 +

1/
√

2) < Lth is a mild one.

Thus, as before, the optimal codeword lengths for the relaxed problem (allowing

real-valued lengths) correspond, once again, to Shannon lengths for a titled distribution

P ∗. As remarked earlier, the performance of the optimal source code is known to be not

too far from the Shannon code for P . This observation can be justified by the following

simple corollary of Theorem 7.7.4.

Corollary 7.7.5. The KL-Divergence between P , P ∗ is bounded as

D(P ||P ∗) ≤ log
(

1 + 1√
2

)
.

Proof. The proof follows from (7.37), which is in turn derived in the proof of theorem
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7.7.4 in section 7.8.3.

Thus, the average length for Shannon codes and our codes do not differ by more than

log(1 + 1/
√

2) (cf. [18]). Indeed, we note in Figures 7.7a, 7.7b via numerical simulations

that the optimal cost in (7.18) is very close to the performance of optimal codes designed

using [56]. This suggests that possibly there is an appropriate rounding-off procedure

for real-valued lengths that can yield integer lengths with close to optimal performance;

devising such a rounding-off procedure is an interesting research direction for the future.

We close this section by noting that analogous versions of Lemma 7.5.2 and Lemma 7.8.6

in the Appendix can be obtained for optimization problem (7.18).

7.8 Proofs

7.8.1 Proof of Theorem 7.3.2

We establish the expression for average age given in (7.12) for the more general class

of randomized schemes; Theorem 7.3.2 will follow upon setting θ(x) = 1, for all x ∈ X .

Recall that the symbol ∅ is available only in the extended model in Section 7.7, and not

in the original model discussed in rest of the paper. Note that the formula for average

age given in Theorem 7.3.2 is similar in form to the expressions for average age derived in

other settings; see [51] for an example.

We will first set up some notation. Let S0 := 0 and

Sk := inf{t > Sk−1 : U(t) > U(t− 1)}, k ∈ N.

Namely, Sk is the time at which the decoder updates its estimate for the symbol for the

kth time. Recall that U(t) is incremented only on successful reception at the receiver

and is strictly increasing in t. For brevity, we introduce the notation Yk := Sk − Sk−1 for

the time between the (k − 1)th and the kth information update at the decoder. Further,

denote by Zk := Sk − U(Sk) the age at time Sk, which is simply the time taken for the
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successful reception of the symbol9 x ∈ X transmitted at time U(Sk). Also, denote by Rk

the sum of instantaneous age between Sk−1 and Sk (the kth reward), namely

Rk :=
Sk∑

t=Sk−1+1
(t− U(t)).

Heuristically, our proof can be understood as follows. We note that the asymptotic

average age is roughly ∑∞
k=1Rk

limk→∞ Sk
.

It is easy to see that {Yk}∞k=1 is an iid sequence. Thus, if {Rk}∞k=1, too, was an iid sequence,

we would obtain the asymptotic average age to be E [R1] /E [Y1] by the standard Renewal

Reward Theorem [81]. Unfortunately, this is not the case. But it turns out that the

dependence in sequence {Rk} is only between consecutive terms. Therefore, we can obtain

the same conclusion as above by dividing the sum ∑∞
k=1Rk into the sum of odd terms and

even terms, each of which is in turn a sum of iid random variables.

We will now proceed to prove that dependence in Rk is between consecutive terms.

Since U(t) remains U(Sk−1) for all t < Sk, we get for k ≥ 1 that

Rk = (Sk − Sk−1 − 1)(Sk − Sk−1)
2

+ (Sk − Sk−1 − 1) · (Sk−1 − U(Sk−1))

+ Sk − U(Sk)

= 1
2Y

2
k + Yk

(
Zk−1 −

1
2

)
+ Zk − Zk−1, (7.19)

with Z0 set to 0.

Note that since the source sequence {Xn} is iid and the randomization θ is stationary,

the sequences Yk and Zk are iid, too. Therefore, the (R2n)n∈N and (R2n+1)n∈N are both10

iid sequences with E [R2n] = E [R2n+1] = E [R2] for all n.

9This must be a symbol in X and not ∅ by the definition of Sk.
10The initial term R1 has a different distribution since Z0 = 0.
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Using this observation, we can obtain the following expression for the average age:

Ā(e, θ) = E [R2]
E [Y1] . (7.20)

Before we prove (7.20), which is the main ingredient of our proof, we evaluate the expression

on the right-side.

For E [Y1], note that Y1 gets incremented by `(∅) each time ∅ is sent, and gets incre-

mented finally by `(x) once a symbol x ∈ X is sent. Thus, Y1 takes the value `(x) + r`(∅)

with probability (1− E [θ(X)])rθ(x)P (x). Denoting N0 = N ∪ {0}, we get

E [Y1] =
∑
x∈X

∑
r∈N0

(`(x) + r`(φ))P (x)θ(x)(1− E [θ(X)])r

=
∑
x∈X

∑
r∈N0

`(x)P (x)θ(x)(1− E [θ(X)])r

+
∑
x∈X

∑
r∈N0

r`(φ)P (x)θ(x)(1− E [θ(X)])r

=
∑
x∈X `(x)P (x)θ(x)

E [θ(X)] + `(φ)(1− E [θ(X)])
E [θ(X)]

= E [L(θ)]
E [θ(X)] .

For E [R2], it follows from (7.19) that

E [R2] = 1
2E

[
Y 2

2

]
+ E [Y2Z1]− 1

2E [Y2] ,

since E [Z2] = E [Z1]. Also, note that Z1 only depends on the symbol x ∈ X received at

time S1 which in turn can depend only on the symbols Xn for n ≤ S1 − 1. On the other

hand, Y2 = S2−S1 depends on symbols Xn for n ≥ S1 and the outputs of the independent

coin tosses corresponding to randomization θ. Therefore, Z1 is independent of Y2, whereby

E [R2] = 1
2E

[
Y 2

2

]
+ E [Y2]

(
E [Z1]− 1

2

)
.

Next, note that Z1 takes the value `(x), x ∈ X , when the symbol received at S1 is x. This
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latter event happens with probability

∞∑
r=0

(1− E [θ(X)])rθ(x)P (x) = θ(x)P (x)
E [θ(X)] ,

and so, by the definition of L(θ) in (7.13),

E [Z1] =
∑
x `(x)θ(x)P (x)
E [θ(X)]

= E [L(θ)]
E [θ(X)] −

`(∅)(1− E [θ(X)])
E [θ(X)] .

Then by denoting p∅ = 1 − E [θ(X)], the second moment E [Y 2
1 ] can be computed by

observing the following recursion:

E
[
Y 2

1

]
=
∑
x∈X

∑
r∈N0

(`(x) + r`(∅))2P (x)θ(x)pr∅

=
∑
x∈X

`(x)2P (x)θ(x)

+ p∅
∑
x∈X

∑
r∈N

(`(x) + r`(∅))2P (x)θ(x)pr−1
∅

=
∑
x∈X

`(x)2P (x)θ(x)

+ p∅
∑
x∈X

∑
r∈N

(
`(x) + (r − 1)`(∅)

)2
P (x)θ(x)pr−1

∅

+ 2`(∅)p∅
∑
x∈X

∑
r∈N

(
`(x) + (r − 1)`(∅)

)
P (x)θ(x)pr−1

∅

+ p∅
∑
x∈X

∑
r∈N

`(∅)2P (x)θ(x)pr−1
∅

=
∑
x∈X

`(x)2P (x)θ(x)

+ p∅E
[
Y 2

1

]
+ 2`(∅)(1− E [θ(X)])E [Y1] + `(∅)2p∅,

which upon rearrangement yields

E
[
Y 2

1

]
= E [L(θ)2]

E [θ(X)] + 2E [Y1] · `(∅)p∅
E [θ(X)] .
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Upon combining the relations derived above, we get

E [R2]
E [Y1] = E [L(θ)2]

2E [L(θ)] + E [L(θ)]
E [θ(X)] −

1
2 ,

which with (7.20) completes the proof.

It remains to establish (7.20). The proof is a simple extension of the renewal reward

theorem to our sequence of rewards Rn in which adjacent terms may be dependent. We

include it here for completeness. Note that (Yn)n∈N is a sequence of non-negative iid

random variables with mean E [Y1], and Sn = ∑n
k=1 Yk for all n ∈ N. The sequence {Sn}

serves as a sequence of renewal times and Rn denotes the reward accumulated in the nth

renewal interval (though not in the standard iid sense). Define N(t) to be the number of

receptions up to time t > 0, i.e.,

N(t) = sup {n : Sn ≤ t},

and R(t) to be the cumulative reward accumulated till time t, i.e.,

R(t) =
N(t)∑
k=1

Rk.

With this notation, we have

R(t)
t

=
∑N(t)
k=1 Rk

t
(7.21)

=
∑N(t)
k=1 Rk

N(t) .
N(t)
t

. (7.22)

Note that

∑bN(t)
2 c

k=1
∑
i∈{0,1}R2k+i

N(t) ≤
∑N(t)
k=2 Rk

N(t)

≤
∑dN(t)

2 e
k=1

∑
i∈{0,1}R2k+i

N(t) .
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We now analyze the two bounds in the previous set of inequalities. Since E [Y1] is finite,

we get (see [81] for a proof)

lim
t→∞

N(t)
t
→ 1

E [Y1] a.s., (7.23)

which also shows that N(t)→∞ a.s. as t→∞. Therefore, for i ∈ {0, 1},

∑dN(t)
2 e

k=1 R2k+i

N(t) =
∑dN(t)

2 e
k=1 R2k+i⌈

N(t)
2

⌉ ·

⌈
N(t)

2

⌉
N(t) .

Since (R2k+i)k∈N is iid and N(t)→∞ a.s. as t→∞, strong law of large numbers yields

lim
t→∞

∑dN(t)
2 e

k=1 R2k+i⌈
N(t)

2

⌉ = E [R2] a.s. ∀i ∈ {0, 1},

which further gives

lim
t→∞

∑dN(t)
2 e

k=1
∑
i∈{0,1}R2k+i

N(t) = E [R2] a.s..

Similarly,

lim
t→∞

∑bN(t)
2 c

k=1
∑
i∈{0,1}R2k+i

N(t) = E [R2] a.s..

Combining the observations above, we get

lim
t→∞

∑N(t)
k=1 Rk

N(t) = E [R2] a.s.,

which together with (7.22) and (7.23) yields (7.20).
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7.8.2 Proof of Theorem 7.5.1

Our proof is based on noticing that the minmax cost ∆∗(P ) in (7.8) involves weighted

average length with weights gz,Q,P (x). In fact, we will see below that there is no loss in

restricting to nonnegative weights, whereby our cost has a form of average length with

respect to a distribution that depends on (z,Q). The broad idea of the proof is to establish

that a optimal code corresponding to the least favorable choice of (z,Q) is minmax optimal.

However, the proof is technical since our cost function may not satisfy the assumptions in

a standard saddle-point theorem.

A simpler form of the minmax cost ∆∗(P ) from (7.6) is given by

∆∗(P ) = min
`∈Λ

max
z≥0

f(`, z), (7.24)

where

f(`, z) := −z2E [L]
2 + z

√
E [L2] + E [L] . (7.25)

We seek to apply the following version of Sion’s minmax theorem to the function f .

Theorem 7.8.1 (Sion’s Minmax Theorem [84]). Let X be convex space and Y be a convex,

compact space. Let h be a function on X × Y which is convex on X for every fixed y in Y

and concave on Y for every fixed x in X . Then,

inf
x∈X

sup
y∈Y

h(x, y) = sup
y∈Y

inf
x∈X

h(x, y).

Indeed, the following lemma shows that our function f satisfies the convexity require-

ments of Sion’s minmax theorem.

Lemma 7.8.2. f(`, z) is convex in ` for every fixed z ≥ 0 and concave in z for a fixed

` ∈ Λ.

Proof. To show that f(`, z) is a convex function of ` for every fixed z ≥ 0, it suffices to

show that
√
E [L2] is convex in L = `(X). To that end, let L1 = `1(X) and L2 = `2(X),
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for some `1 and `2 in λ. For all λ ∈ [0, 1],

√
E
[
(λL1 + (1− λ)L2)2

]
≤ λ

√
E [L2

1] + (1− λ)
√
E [L2

2],

where the inequality is by Minkowski inequality for ‖L‖2.

The concavity in z can be seen easily by noticing that ∂2f(`,z)
∂z2 ≤ 0 for all ` in λ.

However, our underlying domains of optimization are not compact. Our proof below

circumvents this difficulty by showing that we may replace one of the domains by a compact

set. For ease of reading, we divide the proof into 3 steps; we begin by summarize the

flow at a high-level. The first step is to show that this minmax cost remains unchanged

when the domain of z is restricted to a bounded interval [0, K] for a sufficiently large

K. This will allow us to interchange minl∈Λ and maxz∈[0,K] in the second step by using

Theorem 7.8.1 to obtain

∆∗(P ) = max
z∈[0,K]

min
`∈Λ

f(`, z). (7.26)

Furthermore, we then use Corollary 7.4.2 to linearize the cost. But this brings in the

maximization over an additional parameter Q, which we again interchange with the

minimum over ` using Sion’s minmax theorem (Theorem 7.8.1). Note that the required

convexity of the cost function is easy to see; we note it in the following lemma.

Lemma 7.8.3. For every fixed z ≥ 0, ∑x∈X gz,Q,P (x)`(x) is convex in ` for a fixed Q� P

and concave in Q for a fixed ` ∈ Λ.

Proof. For every fixed z ≥ 0, the cost function ∑x∈X gz,Q,P (x)`(x) is linear, and thereby

convex, in ` for a fixed Q . For concavity in Q, note that for a fixed ` ∈ Λ, the function√
Q(x) is a concave function of Q(x), for all x in X .

Thus, we obtain

∆∗(P ) = max
z∈[0,K],Q�P

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x).
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In the final step, we will establish that the optimal code for linear cost with weights

corresponding to the least favorable (z,Q) is minmax optimal. We now present each step

in detail.

Step 1 We begin by noting that there is no loss in restricting to codes with11 E [L] ≤

log |X |. Indeed, note that for E [L] > log |X | the average age is bounded as

E [L] + E [L2]
2E [L] ≥

3
2E [L] > 3

2 log |X |, (7.27)

where we have used Jensen’s inequality. On the other hand, a fixed-length code with

`(x) = log |X | attains

E [L] + E [L2]
2E [L] = 3

2 log |X |, (7.28)

which gives the desired form

∆∗(P ) = min
`∈Λ,E[L]≤logX

E [L] + E [L2]
2E [L]

= min
`∈Λ,E[L]≤logX

max
z∈R

f(`, z), (7.29)

where f(`, z) is defined in (7.25). Also, for a fixed ` in Λ the function f(`, z) attains its

maximum at z∗(`) given by

z∗(`) :=

√
E [L2]
E [L] .

For E [L] ≤ log |X |, the maximizer z∗(`) is bounded as12

z∗(`) ≤

√
E [L2]
H(X)

=

√∑
x P (x)`(x)2

H(X)

11For simplicity, we assume that logX is an integer.
12We assume without loss of generality that P (x) > 0 for every x ∈ X .
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≤ E [L]
H(X)

√
max
x∈X

1
P (x)

≤ log |X |
H(X)

√
1

minx∈X P (x) ,

where the first inequality uses E [L] ≥ H(X), which holds for every prefix-free code, and

the second holds since ‖a‖2 ≤ ‖a‖1 for any sequence a = (a1, ..., an). Denoting

K := log |X |
H(X)

√
1

minx∈X P (x) ,

(7.29) yields

∆∗(P ) = min
`∈Λ,E[L]≤log |X |

max
z∈[0,K]

f(`, z).

Next, we show that the minmax cost above remains unchanged when we drop the constraint

E [L] ≤ log |X | in the outer minimum, which will complete the first step of the proof and

establish (7.26). Indeed, since by (7.28) the minimum over ` ∈ Λ such that E [L] ≤ log |X |

is at most (3/2) log |X |, it suffices to show that

min
`∈Λ,E[L]>log |X |

max
z∈[0,K]

f(`, z) > 3
2 log |X |. (7.30)

We divide the proof of this fact into two cases. First consider the case when ` in Λ is such

that E [L] > log |X | and K ≥ z∗(`). Then, maxz∈[0,K] f(`, z) equals maxz≥0 f(`, z), which

is bounded below by (3/2) log |X | using (7.27) and the definition of f(`, z). For the second

case when E [L] > log |X | and K < z∗(`), we have

max
z∈[0,K]

f(`, z) = −K2E [L]
2 +K

√
E [L2] + E [L]

> K2E [L]
2 + E [L]

>
3
2 · E [L]

>
3
2 · log |X |,
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where the first inequality uses K < z∗(`) =
√
E [L2]/E [L] and the second holds since

K ≥ 1 from its definition. Therefore, we have established (7.30), and so we have

∆∗(P ) = min
`∈Λ,E[L]≤log |X |

max
z∈[0,K]

f(`, z) = min
`∈Λ

max
z∈[0,K]

f(`, z).

Step 2 By lemma 7.8.2 , f(`, z) is convex in ` for every fixed z ≥ 0 and concave in z

for a fixed ` ∈ Λ, z takes values in a convex compact set [0, K], and the set {` : ` ∈ Λ} is

convex, we get from Sion’s minmax theorem (Theorem 7.8.1) that

∆∗(P ) = min
`∈Λ

max
z∈[0,K]

f(`, z) = max
z∈[0,K]

min
`∈Λ

f(`, z).

Using Corollary 7.4.2, we have

‖L‖2 = max
Q�P

∑
x∈X

Q(x) 1
2P (x) 1

2 `(x),

which by the definition of f in (7.25) further yields

f(`, z) = max
Q�P

∑
x∈X

gz,Q,P (x)`(x), (7.31)

where

gz,Q,P (x) =
(

1− z2

2

)
P (x) + z

√
Q(x)P (x).

We have obtained

∆∗(P ) = max
z∈[0,K]

min
`∈Λ

max
Q�P

∑
x∈X

gz,Q,P (x)`(x). (7.32)

From Lemma 7.8.3, ∑x∈X gz,Q,P (x)`(x) is convex in ` , for all Q� P , and concave in Q,

for a fixed ` ∈ Λ. Furthermore, since the set {Q : Q� P} is convex compact for a pmf P
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on finite alphabet, using Sion’s minmax theorem (Theorem 7.8.1) once again, we get

∆∗(P ) = max
z∈[0,K]

max
Q�P

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x), (7.33)

which completes our second step.

Step 3 By (7.33), we get

∆∗(P ) ≤ max
z≥0

max
Q�P

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x).

On the other hand, by (7.24) and (7.31) we have

∆∗(P ) = min
`∈Λ

max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x)

≥ max
z≥0

max
Q�P

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x),

whereby

∆∗(P ) = min
`∈Λ

max
z≥0

max
Q�P

∑
x∈X

gz,Q,P (x)`(x)

= max
z≥0

max
Q�P

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x), (7.34)

which proves the first part of theorem 7.5.1.

Next, we claim that in the maxmin formula above, the maximum is attained by a

(z,Q) for which gz,Q,P (x) is non-negative for every x. Indeed, if for some z,Q there exists

an x′ in X such that gz,Q,P (x′) is negative, then the cost ∑x∈X gz,Q,P (x)`(x) is minimized

by any ` such that `(x′) =∞ and the minimum value is −∞. Such z,Q clearly can’t be

the optimizer of the maxmin problem, since for z = 0, we have gz,Q,P ≥ 0, which in turn

leads to min`∈Λ
∑
x∈X gz,Q,P (x)`(x) ≥ 0.

Finally, consider (z,Q) such that gz,Q,P (x) ≥ 0 for all x ∈ X . For such a (z,Q), we
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seek to identify the minimized ` below:

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x)

=
∑
x′∈X

gz,Q,P (x′) min
`∈Λ

∑
x∈X

gz,Q,P (x)∑
x′∈X gz,Q,P (x′)`(x). (7.35)

Thus, our optimization problem reduces to the standard problem of designing minimum

average length prefix-free codes for the pmf

Pz,Q(x) = gz,Q,P (x)∑
x′∈X gz,Q,P (x′) .

By Shannon’s source coding theorem for variable length codes, the minimum is achieved

by

`∗z,Q(x) := log
∑
x′∈X gz,Q,P (x)
gz,Q,P (x) .

Furthermore, `∗z,Q is the unique minimizer in Λ.

Consider now a maximizer (z∗, Q∗) of the maxmin problem in (7.34), and let `o = `∗z∗,Q∗ .

Then, by Lemma 7.8.5 in the appendix,(`o, (z∗, Q∗)) is a saddle-point for the minmax

problem in (7.34). Moreover, `o is the unique minmax optimal solution.

7.8.3 Proof of Theorem 7.7.4

Denoting

f(`, z) = −z2 (Lth − E [L])
2 + z

√
E [L2] + E [L] , (7.36)

the optimal cost ∆∗(P ) can be written as

∆∗(P ) = inf
`∈Λ,E[L]<Lth

E [L2]
2(Lth − E [L]) + E [L]

= min
`∈Λ,E[L]<Lth

max
z≥0

f(`, z).
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This form is similar to the one we had in Theorem 7.5.1. But the proof there does not

extend to the case at hand. Specifically, note that for each `, f(`, z) attains its maximum

value for z∗(`) =
√

E[L2]
(Lth−E[L]) which, unlike the quantity that we obtained in the proof of

Theorem 7.5.1, is unbounded over the set of ` ∈ Λ such that E [L] ≤ Lth. However,

under the additional assumption H(X) + log(1 + 1/
√

2) < Lth, we can provide a simpler

alternative proof. We rely on the following lemma.

Lemma 7.8.4. Consider a function h : X ×Y → R such that the set X is compact convex,

the set Y is convex, h(x, y) is a convex function of x for every fixed y and a concave

function of y for every fixed x. Suppose additionally that there exist a convex subset X0 of

X and a compact convex subset Y0 of Y such that

1. for every for every x ∈ X0, an optimizer y∗(x) ∈ arg maxy∈Y h(x, y) belongs to Y0;

and

2. for every y ∈ Y0, an optimizer x∗(y) ∈ arg minx∈X h(x, y) belongs to X0.

Then,

min
x∈X

max
y∈Y

h(x, y) = max
y∈Y

min
x∈X

h(x, y).

Proof. Note that since for x in X0, the y that maximizes h(x, y) over Y is in Y0, we get

min
x∈X

max
y∈Y

h(x, y) ≤ min
x∈X0

max
y∈Y

h(x, y) = min
x∈X0

max
y∈Y0

h(x, y).

Further, by Sion’s minmax theorem (Theorem 7.8.1), the right-side equals maxy∈Y0 minx∈X0 h(x, y).

But by our second assumption, the restriction x ∈ X0 can be dropped, and we have

max
y∈Y0

min
x∈X0

h(x, y) = max
y∈Y0

min
x∈X

h(x, y) ≤ max
y∈Y

min
x∈X

h(x, y).

Thus, we have shown minx∈X maxy∈Y h(x, y) ≤ maxy∈Y minx∈X h(x, y), which completes

the proof since the inequality in the other direction holds as well.

For our minmax cost, we will verify that both the conditions of the lemma above

hold under the assumption H(X) + log(1 + 1/
√

2) < Lth. Indeed, first note that for any



Chapter 7. Minimum Age Source Codes 220

fixed ` ∈ Λ with E [L] ≤ H(X) + log(1 + 1/
√

2), the maximizer z of f(`, z) given by√
E [L2]/(Lth − E [L]) satisfies

√
E [L2]

Lth − E [L]

≤
√

1
minx P (x) ·

E [L]
Lth − E [L]

≤
√

1
minx P (x) ·

H(X) + log(1 + 1/
√

2)
Lth −H(X)− log(1 + 1/

√
2)
.

Denote the right-side above by K and L′th = H(X) + log(1 + 1/
√

2). Therefore, with the

set {` ∈ Λ,E [L] ≤ L′th} in the role of X0 in Lemma 7.8.4, the set [0, K] can play the role

of Y0.

To apply Lemma 7.8.4, we require two conditions to hold: first, that f(l, z) is a convex

function of ` for every fixed z and a concave function of z for every fixed `, second, that

for every z ∈ [0, K], the minimizing ` satisfies E [L] ≤ L′th.The first easily follows from

(7.36). The proof of this fact is exactly the same as Lemma 7.8.2. However, while the

second condition can be shown to be true, the proof of this fact is almost the same as the

proof of our theorem. For simplicity of presentation, we instead present an alternative

proof of the theorem that uses a slight extension of the lemma above. Note that from our

foregoing discussion and following the proof of the lemma, we already have obtained

∆∗(P ) ≤ max
z∈[0,K]

min
`∈Λ,E[L]≤L′th

f(`, z).

By using Corollary 7.4.2 and using Sion’s minmax theorem once again, we get

∆∗(P )

≤ max
z∈[0,K]

max
Q�P

min
`∈Λ,E[L]≤L′th

∑
x∈X

gz,Q,P (x)`(x)− z2

2 Lth,
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where

gz,Q,P (x) :=
(

1 + z2

2

)
P (x) + z

√
Q(x)P (x).

In the preceding argument, we can use Sion’s minmax theorem as the following two

conditions hold. First, for every fixed z ≥ 0, the function ∑x∈X gz,Q,P (x)`(x)− z2

2 Lth is

concave in Q for a fixed ` ∈ Λ and convex in ` for a fixed Q � P . Second, the sets

{Q : Q � P} and {` ∈ Λ : E [L] ≤ L′th} are compact and convex. Proof of the first is

exactly the same as that of 7.8.3. Second is true as we have restricted to a finite alphabet

X . Thus, we can proceed as in the proof of the lemma, but we need to show now that for

every z ∈ [0, K] and Q� P , the optimal `∗(z,Q) satisfies E [L∗] ≤ L′th . Indeed, consider

the following optimization problem for a fixed z, Q:

min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x)

=
∑
x′∈X

gz,Q,P (x′)
min

`∈Λ

∑
x∈X

gz,Q,P (x)∑
x′∈X gz,Q,P (x′)`(x).

Since gz,Q,P (x)∑
x′∈X gz,Q,P (x′) are nonnegative and add to 1, in the optimization problem above,

we are minimizing the expected prefix free lengths for a finite alphabet for a particular

distribution. Thus, by Shannon’s Source Coding Theorem, the optimal `∗z,Q is given by

`∗z,Q(x) := log
∑
x′∈X gz,Q,P (x′)
gz,Q,P (x) ;

in fact, this optimizer is unique. But then for every x in X ,

`∗z,Q(x)

= log
∑
x′∈X gz,Q,P (x′)
gz,Q,P (x)

= log
∑
x′∈X

(
1 + z2

2

)
P (x) +∑

x∈X z
√
Q(x)P (x)(

1 + z2

2

)
P (x) + z

√
Q(x)P (x)

≤ log 1
P (x)
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+ log


(
1 + z2

2

)
(
1 + z2

2

)
+ z

√
Q(x)
P (x)

+ z(
1 + z2

2

)
+ z

√
Q(x)
P (x)


≤ log 1

P (x) + log

(
1 + z2

2

)
(
1 + z2

2

) + z(
1 + z2

2

)


≤ log 1
P (x) + log

(
1 + 1√

2

)
,

where the first inequality is by the Cauchy-Schwarz inequality, the second inequality

follows upon noting that Q(x)
P (x) is nonnegative, and the last inequality follows from the fact

that z2/2 + 1 ≥
√

2z (which holds with equality at z =
√

2). Thus as a consequence of

this inequality the expected code length of such a code is upper bounded as follows,

E
[
L∗z,Q

]
≤ H(x) + log

(
1 + 1√

2

)
, (7.37)

which in the manner of Lemma 7.8.4 gives

∆∗(P ) = max
z≥0

max
Q�P

min
`∈Λ,E[L]≤Lth

∑
x∈X

gz,Q,P (x)`(x)− z2

2 Lth.

Finally, it remains to establish that `∗z∗,Q∗ is the unique minmax optimal solution. This can

be shown in exactly the same manner as it was shown for Theorem 7.5.1 in the previous

section; we skip the details.

7.8.4 A saddle-point lemma

The following simple result is needed to establish the minmax optimality of our scheme.

The first part of the result claims that any pair of minmax optimal x and maxmin optimal

y forms a saddle point, a well-known fact. The second part claims that if the minimizer

for the maxmin optimal y is unique, then it must also be minmax optimal and thereby

constitute a saddle-point with y.
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Lemma 7.8.5. Consider the minmax problem min
x∈X

max
y∈Y

h(x, y), and assume that

min
x∈X

max
y∈Y

h(x, y) = max
y∈Y

min
x∈X

h(x, y).

Then, for every pair (x∗, y∗) such that x∗ ∈ arg min
x∈X

max
y∈Y

h(x, y) and y∗ ∈ arg max
y∈Y

min
x∈X

h(x, y)

constitutes a saddle-point. Furthermore, if the minimizer xo(y∗) of minx∈X h(x, y∗) is

unique, then x∗ = xo(y∗) is the unique minmax optimal solution.

Proof. Since minmax and maxmin costs are assumed to be equal, by the definition of x∗

and y∗, we have

h(x, y∗) ≥ max
y′∈Y

min
x′∈X

h(x′, y′)

= min
x′∈X

max
y′∈Y

h(x′, y′) ≥ h(x∗, y), (7.38)

for all x in X and y in Y. Upon substituting x∗ for x and y∗ for y, we get that x∗

is a minimizer of h(x, y∗) and y∗ a maximizer of h(x∗, y). Therefore, (x∗, y∗) forms a

saddle-point and h(x∗, y∗) = minx∈X maxy∈Y h(x, y).

Turning now to the second part, suppose that x′, too, is minmax optimal. Then, using

(7.38) with x = x′ and y = y∗, we get that x′ must be a minimizer of h(x, y∗) as well. But

since this minimizer is unique, x′ must coincide with xo.

Proof of Lemma 7.5.2

Denoting

cP (z,Q) :=
∑
x∈X

gz,Q,P (x) log
∑
x′∈X gz,Q,P (x′)
gz,Q,P (x) ,

we begin by observing the concavity of cP (z,Q). Recall the notations G = {z ≥ 0, Q ∈

R|X | : gz,Q,P (x) ≥ 0 ∀x ∈ X} and gz,Q,P (x) = (1− z2/2)P (x) + z
√
Q(x)P (x).

Lemma 7.8.6. The function cP (z,Q) is concave in Q for each fixed z and is concave in

z for each fixed Q, over the set G.
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Proof. For the first part, (7.35) yields that for every (z,Q) ∈ G,

∑
x∈X

gz,Q,P (x) log
∑
x′∈X gz,Q,P (x′)
gz,Q,P (x)

= min
`∈Λ

∑
x∈X

gz,Q,P (x)`(x).

Also, for every fixed z, the function gz,Q,P (x) is concave inQ, and thereby∑x∈X gz,Q,P (x)`(x),

is concave in Q. Thus, since the minimum of concave functions is concave, cP (z,Q) is

concave in Q for a fixed z. Similarly, we can show concavity in z for a fixed Q since

gz,Q,P (x) is concave in z, too, for every fixed Q.

We now complete the proof of Lemma 7.5.2. We will show that for any (z,Q) which is

feasible for optimization problem (7.9), we can find a feasible (z,Q′) with Q′ satisfying

(7.11), and

cP (z,Q) ≤ cP (z,Q′).

Indeed, consider Q′(x) := Q(Ai)/|Ai| for all x ∈ X . The remainder of the proof is

divided into two parts, the first proving the feasibility of Q′ and the second proving

cP (z,Q) ≤ cP (z,Q′).

Feasibility of (z,Q′) From the feasibility of (z,Q), for all symbols x in Ai and for all i

in [MP ], gz,Q,P (x) ≥ 0, whereby

∑
x∈Ai

gz,Q,P (x) =
∑
x∈Ai

(
1− z2

2

)
P (x)

+ z
∑
x∈Ai

√
Q(x)P (x)

=
(

1− z2

2

)
P (Ai) + z

∑
x∈Ai

√
Q(x)P (x)

≥
(

1− z2

2

)
P (Ai) + z

√
Q′(Ai)P (Ai)

= |Ai|gz,Q′,P (x)

≥ 0,
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where the first inequality is by Cauchy-Schwarz inequality, the positivity of z, and the

assumption that P (x) = P (Ai)/|Ai| for every x in Ai, and the final identity uses definition

of Q′. This proves the feasibility of (z,Q′) for the optimization problem (7.9).

Proof of optimality Denoting by Π(A1) the set of all permutations of the elements of

A1, let Qπ be the distribution given by

Qπ(x) =


Q(π(x)), ∀x ∈ A1

Q(x), otherwise.

Then, the distribution Q = (1/|Π(A1)|) ·∑π∈Π(A1) Q
π satisfies

Q(x) =


1
|A1| ·Q(A1), ∀x ∈ A1

Q(x), otherwise.

Since by Lemma 7.8.6 cP (z,Q) is concave in Q for every fixed z, we get

cP (z,Q) ≥ 1
|Π(A1)| ·

∑
π∈Π(A1)

cP (z,Qπ).

Furthermore, note that gz,Qπ ,P (x) = gz,Q,P (π(x)) since P (x) = P (A1)/|A1| for every x in

A1, and thereby cP (z,Qπ) = cP (z,Q) for every π ∈ Π(A1) . Therefore, combining the

observations above, we obtain cP (z,Q) ≥ cP (z,Q).

Repeating this argument by iteratively using permutations of Ai for i ≥ 2, we obtain

the required inequality

cP (z,Q′) ≥ cP (z,Q).
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7.9 Concluding Remarks

In this chapter, we studied the source coding problem where the goal is to minimize

E [L] + E [L2]
2E [L]

subject to the constraint that the code lengths satisfy Kraft’s inequality. We saw that this

problem differs from the standard source coding problem where the goal is to minimize

E [L] , and the classic source-coding solutions such as deploying Shannon codes may be

suboptimal. Our main result was a structural result showing that the optimal code lengths

for the relaxed version of the problem are Shannon lengths for tilting of the original

distribution. Our recipe to prove this result was to linearize the cost function in terms

of length by first expressing as the optimal value of a quadratic maximization problem

over a new variable. Then, we use a variational formula for the L2 norm of a random

variable to linearize the cost. We believe that our approach can be used to prove similar

structural results for other source coding problems, thereby gaining computational insights

into solving them, as we saw with the application of our recipe for the problem of designing

source codes with minimum delay.
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