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Classical Setup: The Query Complexity framework [1]

(Query Point)
Lt

Algorithm 7 First Order

Oracle O

Update a¢

g(xt)
(Subgradient Estimate)

Algorithm 7t: Minimize unknown function f using an oracle O.
Oracle O: Output noisy sub-gradient estimate g(x;) for query ;.

Our Setup: Information-Constrained Optimization
(Query Point, Channel)

Algorithm 7r First Order

Oracle O

Update x;
Y;

(Channel Output, Subgradient Estimate)

» g(x;) can be sent using a channel W; € W.
» Only the output Y; available to the algorithm.

» VYV models the information constraints.

Information-Constraints

» Local Differential Privacy: The family Wyriy . comprising W s.t.
%4 T
1 VY ,) < e
W(y | z’)
» Communication Constraints: the family W.oy , comprising W s.t.

(the output range) |Y| < 27.

Ve, ' € X,y € ).

» Random Coordinate Descent: the family W, comprising W s.t.
for any input g € RY,
W outputs {g(I), I} where I is a randomly chosen coordinate.

Our Goal

Characterize

E(T, W) := inf inf sup Ef(x(w, W) — f*
(TW) Tl {WitiemeW {f,0}c0 (@(m W)

Function, Oracle class O consists of tuples of { f, O} such that
> f: X - Ris
» X has Euclidean diameter atmost

» Unbiased Oracle:

» Almost surely norm-bounded:

Classical Result (no channel constraints):

Main Result: Information-Constrained Opt. Lower Bounds

For T’ large enough,
(Private Optimization) and € € [0, 1],

E(T, W) > 2o \/d
’ priv,e) = \/T 62.

(Communication-Constrained Optimization) and r € [d],

E(T, Weonr) > Db d
9 com,r) \/T ’I".

(Random Coordinate descent)

DB
E(T, W) > — - Vd.
( b1) = T

These LBs are tight and achieved by gradient coding.

Proof: Key ldeas

» Similar to [1], [2], [3].

» Lower bound the error due to each coordinate as opposed to the
total error and use a result from [3].

» Our techniques extend to the strongly convex function class.
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A structured optimization problem where adaptivity helps

For X = [—1, 1], consider

That is,

,2(s + 1)} of coordinates can have

where v € [—1,1]% is

» Only one of the block {zs,...
non-zero values.

» All the coordinates in a block have the same absolute value.

Oracle: Outputs 2(x; — Z3),
where {Z;}°, isiid., Z; = {—1,1}% and EZ; = v.

Channel Constraint: Algorithm can only see one coordinate of the
gradient estimate. (RCD channel family)

The gap between adaptive and nonadaptive protocols

Lower bound for nonadaptive protocols:
For any nonadaptive protocol we can find a block-sparse v s.t.

ds
2
Ellzr — U“z = ?

Upper bound for a adaptive protocol:
There exist an adaptive protocol such that

d + s?
=

2
Ellzr — v“z é
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