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Classical Setup: The Query Complexity framework [1]

Algorithm π First Order

Oracle OUpdate xt
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ĝ(xt)

(Subgradient Estimate)

Algorithm π: Minimize unknown function f using an oracle O.
Oracle O: Output noisy sub-gradient estimate ĝ(xt) for query xt.

Our Setup: Information-Constrained Optimization
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I ĝ(xt) can be sent using a channel Wt ∈ W .

I Only the output Yt available to the algorithm.

I W models the information constraints.

Does adaptive gradient coding help?

Information-Constraints

I Local Differential Privacy: The familyWpriv,ε comprising W s.t.

ln
W (y | x)

W (y | x′)
≤ ε ∀x, x′ ∈ X , y ∈ Y.

I Communication Constraints: the familyWcom,r comprising W s.t.

(the output range) |Y| ≤ 2r.

I Random Coordinate Descent: the familyWobl comprising W s.t.
for any input g ∈ Rd,
W outputs {g(I), I} where I is a randomly chosen coordinate.

Our Goal

Characterize

E(T,W) := inf
π∈ΠT

inf
{Wt}t∈[T ]∈W

sup
{f,O}∈O

Ef(x(π,W )− f∗

Function, Oracle class O consists of tuples of {f,O} such that

I f : X → R is convex.

I X has Euclidean diameter atmost D.

I Unbiased Oracle: E[ĝ(x)|x] ∈ ∂f(x).

I Almost surely norm-bounded: ‖ĝ(x)‖2 ≤ B.

Classical Result (no channel constraints): E(T ) = Θ

(
DB
√
T

)
.

Main Result: Information-Constrained Opt. Lower Bounds

For T large enough,

(Private Optimization) and ε ∈ [0, 1],

E(T,Wpriv,ε) ≥
DB
√
T
·
√
d

ε2
.

(Communication-Constrained Optimization) and r ∈ [d],

E(T,Wcom,r) ≥
DB
√
T
·
√
d

r
.

(Random Coordinate descent)

E(T,Wobl) ≥
DB
√
T
·
√
d.

These LBs are tight and achieved by nonadaptive gradient coding.

Proof: Key Ideas

I Similar to [1], [2], [3].

I Lower bound the error due to each coordinate as opposed to the
total error and use a result from [3].

I Our techniques extend to the strongly convex function class.

———————————————————————–

A structured optimization problem where adaptivity helps

For X = [−1, 1]d, consider

min
X
‖x− v‖2

2 ,

where v ∈ [−1, 1]d is s-block sparse. That is,

I Only one of the block {is, . . . , i(s+ 1)} of coordinates can have
non-zero values.

I All the coordinates in a block have the same absolute value.

Oracle: Outputs 2(xt − Zt),
where {Zt}∞t=1 is i.i.d., Z1 = {−1, 1}d, and EZ1 = v.

Channel Constraint: Algorithm can only see one coordinate of the
gradient estimate. (RCD channel family)

The gap between adaptive and nonadaptive protocols

Lower bound for nonadaptive protocols:
For any nonadaptive protocol we can find a block-sparse v s.t.

E‖xT − v‖2
2 ≥

ds

T
.

Upper bound for a adaptive protocol:
There exist an adaptive protocol such that

E‖xT − v‖2
2 /

d+ s2

T
.
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