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1. The Setup



Classical Setup:1 The query complexity framework

Algorithm π

Algorithm π: Minimize unknown function f using an oracle O.

Oracle O: Output noisy sub-gradient estimate ĝ(xt) for query xt.

What is the best possible convergence rate?

1Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method

e�ciency in optimization.

1



Classical Setup:1 The query complexity framework

Algorithm π
First Order

Oracle O
Update xt

xt
(Query Point)
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What is the best possible convergence rate?

1Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method

e�ciency in optimization.

1



Classical Setup:1 The query complexity framework

Algorithm π
First Order

Oracle O
Update xt

xt
(Query Point)
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Our Setup: Optimization under information constraints

Algorithm π

Update xt

First Order

Oracle O

xt, Wt

(Query Point, Channel)

Yt ĝ(xt)

Wt

(Channel Output, Subgradient Estimate)

ĝ(xt) can be sent using a channel Wt ∈W and only the output Yt

available to the algorithm.

Yt | ĝ(xt) ∼W (· | ĝ(xt)), where Wt ∈ W.
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Yt | ĝ(xt) ∼W (· | ĝ(xt)), where Wt ∈ W.

Reduces to classical setup if we are allowed the identity channel.

2



Our Setup: Optimization under information constraints

Algorithm π

Update xt

First Order

Oracle O

xt, Wt

(Query Point, Channel)

Yt ĝ(xt)
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Information-constraints

1. Local Di�erential Privacy: The family Wpriv,ε comprising W s.t.

ln
W (y | x)

W (y | x′)
≤ ε ∀x, x′ ∈ X , y ∈ Y.

2. Communication Constraints: the family Wcom,r comprising W s.t.

(the output range) |Y| ≤ 2r.

3. Random Coordinate Descent: the family Wobl comprising W s.t. for

any input g ∈ Rd,

W outputs {g(I), I} where I is a randomly chosen coordinate.
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Function Family

I Domain X will be a set of diameter D in Rd.

I Function, Oracle class O consists of all tuples {f,O} such
that

1. f is convex.

2. Unbiased: E [ĝ(x)|x] ∈ ∂f(x).

3. Almost surely norm-bounded: ‖ĝ(x)‖2 ≤ B.

Our Goal:

I Characterize
E(T,W) := inf

π∈ΠT

inf
{Wt}t∈[T ]∈W

sup
{f,O}∈O

E [f(x(π,Q))]− f∗

Worst-case gap to optimality using "joint-best"

T query optimization algo and coding scheme.

I Classical Result (no channel constraints): E(T ) = Θ

(
DB√
T

)
.
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Our Goal:

I Characterize
E(T,W) := inf

π∈ΠT

inf
{Wt}t∈[T ]∈W

sup
{f,O}∈O

E [f(x(π,Q))]− f∗

Worst-case gap to optimality using "joint-best"

T query optimization algo and coding scheme.

I Classical Result (no channel constraints): E(T ) = Θ

(
DB√
T

)
.

4



Function Family

I Domain X will be a set of diameter D in Rd.
I Function, Oracle class O consists of all tuples {f,O} such

that

1. f is convex.

2. Unbiased: E [ĝ(x)|x] ∈ ∂f(x).
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2. Lower Bounds for

Information-Constrained

Optimization



Lower Bounds

For T large enough,

(Private Optimization) and ε ∈ [0, 1],

E(T,Wpriv,ε) ≥
DB√
T
·
√
d

ε2
.

(Communication-Constrained Optimization) and r ∈ [d],

E(T,Wcom,r) ≥
DB√
T
·
√
d

r
.

(Random Coordinate descent)

E(T,Wobl) ≥
DB√
T
·
√
d.

These LBs are tight and achieved by nonadaptive gradient coding.
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3. Proof



Proof: The di�cult case for convex family

Similar to [Nemirovski, Yudin 83], [Agarwal, Bartlett, Ravikumar,

Wainwright 12].
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Proof: The di�cult case for convex family

1. Domain: X = D
2
√
d
[−1, 1]d.

2. Di�cult subclass of functions and oracle:

fV (x) :=
Bδ√
d

d∑
i=1

V (i)x(i), ĝt(i) =

+B/
√
d w.p. (1 + δV (i))/2

−B/
√
d w.p. (1− δV (i))/2

where V ∼ Uniform{−1,+1}d.

3. Average Mutual Information Bound:

E [fV (xT )]− f∗ ≥ BDδ

4

1−

√√√√2

d

d∑
i=1

I(V (i) ∧ {Yt}t∈[T ])

 .

Prior work gets a larger mutual information: I(V ∧ {Yt}t∈[T ]).

Can bound average mutual information using: [J Acharya, C Canonne,

Z Sun, and H Tyagi, "Uni�ed lower bounds for interactive high-dimensional

estimation under information constraints," 2020]
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+B/
√
d w.p. (1 + δV (i))/2

−B/
√
d w.p. (1− δV (i))/2

where V ∼ Uniform{−1,+1}d.

3. Average Mutual Information Bound:

E [fV (xT )]− f∗ ≥ BDδ

4

1−

√√√√2

d

d∑
i=1

I(V (i) ∧ {Yt}t∈[T ])

 .

Prior work gets a larger mutual information: I(V ∧ {Yt}t∈[T ]).

Can bound average mutual information using: [J Acharya, C Canonne,

Z Sun, and H Tyagi, "Uni�ed lower bounds for interactive high-dimensional

estimation under information constraints," 2020]

6



Proof: The di�cult case for convex family

1. Domain: X = D
2
√
d
[−1, 1]d.

2. Di�cult subclass of functions and oracle:

fV (x) :=
Bδ√
d

d∑
i=1

V (i)x(i), ĝt(i) =
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Lower bounds for strongly convex functions are trickier

1. Quadratic functions of the form ‖x− µv‖22 are the bottlenecks.

2. The gradients are no longer independent of the queried point �

introduces complicated correlation between V and the coded

sequence of gradients.

3. Need upper bounds on MI for adaptive protocols to even prove

nonadaptive lower bounds.

4. Even here, adaptive gradient coding does not help.

So, is there a class of optimization problem where adaptivity helps?
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4. Adaptivity Helps!



A structured optimization problem

For X = [−1, 1]d, consider

min
X
‖x− v‖22 ,

where v ∈ [−1, 1]d is s-block sparse. That is,

1. Only one of the block {is, . . . , i(s+ 1)} of coordinates can
have non-zero values.

2. All the coordinates in a block have the same absolute value.

Oracle: Outputs 2(xt − Zt),
where {Zt}∞t=1 is i.i.d., Z1 = {−1, 1}d, and E [Z1] = v.

Channel Constraint: Algorithm can only see one coordinate of the

gradient estimate. (RCD channel family)

8



The gap between adaptive and nonadaptive protocols

Lower bound for nonadaptive protocols:

For any nonadaptive protocol we can �nd a block-sparse v s.t.

E
[
‖xT − v‖22

]
≥ ds

T
.

Upper bound for a adaptive protocol:

There exist an adaptive protocol such that

E
[
‖xT − v‖22

]
/
d+ s2

T
.

9



The Adaptive Protocol

1. (Exploration Phase): Use the �rst T/2 queries to �nd the

non-sparse block.

1.1 Sample a representative coordinate from each block Ts/2d

times.

1.2 Select the block with absolute largest sample mean.

2. (Exploitation Phase): Use the last T/2 iterations to sample all

the s coordinates within the chosen block T/2s times.

3. (Final Estimate):

3.1 For all the coordinates outside the chosen block set the mean

estimate to be 0.

3.2 For all the coordinates within the chosen block use the sample

mean estimate.
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In Summary . . .

1. Adaptive gradient coding doesn't help for standard optimization.

2. For structured optimization problems, adaptive coding does help.

3. Adaptive techniques useful for proving nonadaptive lower bounds.

Thank You!
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