

Information-Constrained Optimization: Can Adaptive Processing of Gradients help?

NeurIPS 2021

Jayadev Acharya, Cornell University Clément Canonne, University of Sydney **Prathamesh Mayekar, Indian Institute of Science** Himanshu Tyagi, Indian Institute of Science

1. The Setup

Algorithm π : Minimize unknown function f using an oracle O.

¹Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Classical Setup:¹ The query complexity framework

Algorithm π : Minimize unknown function f using an oracle O. Oracle O: Output noisy sub-gradient estimate $\hat{g}(x_t)$ for query x_t .

¹Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Classical Setup:¹ The query complexity framework

Algorithm π : Minimize unknown function f using an oracle O. Oracle O: Output noisy sub-gradient estimate $\hat{g}(x_t)$ for query x_t . What is the best possible convergence rate?

¹Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Our Setup: Optimization under information constraints

 $\hat{g}(x_t)$ can be sent using a channel $W_t \in W$ and only the output Y_t available to the algorithm.

 $Y_t \mid \hat{g}(x_t) \sim W(\cdot \mid \hat{g}(x_t)), \text{ where } W_t \in \mathcal{W}.$

Our Setup: Optimization under information constraints

 $\hat{g}(x_t)$ can be sent using a channel $W_t \in W$ and only the output Y_t available to the algorithm.

 $Y_t \mid \hat{g}(x_t) \sim W(\cdot \mid \hat{g}(x_t)), \text{ where } W_t \in \mathcal{W}.$

Reduces to classical setup if we are allowed the identity channel.

Our Setup: Optimization under information constraints

 $\hat{g}(x_t)$ can be sent using a channel $W_t \in W$ and only the output Y_t available to the algorithm.

 $Y_t \mid \hat{g}(x_t) \sim W(\cdot \mid \hat{g}(x_t)), \text{ where } W_t \in \mathcal{W}.$

Reduces to classical setup if we are allowed the identity channel.

1. Local Differential Privacy: The family $\mathcal{W}_{\text{priv},\varepsilon}$ comprising W s.t.

$$\ln \frac{W(y \mid x)}{W(y \mid x')} \le \varepsilon \quad \forall x, x' \in \mathcal{X}, y \in \mathcal{Y}.$$

1. Local Differential Privacy: The family $\mathcal{W}_{\texttt{priv},\varepsilon}$ comprising W s.t.

$$\ln \frac{W(y \mid x)}{W(y \mid x')} \le \varepsilon \quad \forall x, x' \in \mathcal{X}, y \in \mathcal{Y}.$$

2. Communication Constraints: the family $\mathcal{W}_{\text{com},r}$ comprising W s.t.

(the output range) $|\mathcal{Y}| \leq 2^r$.

1. Local Differential Privacy: The family $\mathcal{W}_{\texttt{priv},\varepsilon}$ comprising W s.t.

$$\ln \frac{W(y \mid x)}{W(y \mid x')} \le \varepsilon \quad \forall x, x' \in \mathcal{X}, y \in \mathcal{Y}.$$

2. Communication Constraints: the family $\mathcal{W}_{\texttt{com},r}$ comprising W s.t.

(the output range) $|\mathcal{Y}| \leq 2^r$.

3. Random Coordinate Descent: the family \mathcal{W}_{obl} comprising W s.t. for any input $g \in \mathbb{R}^d$,

W outputs $\{g(I), I\}$ where I is a randomly chosen coordinate.

b Domain \mathcal{X} will be a set of diameter D in \mathbb{R}^d .

- **Domain** \mathcal{X} will be a set of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class ${\mathcal O}$ consists of all tuples $\{f,O\}$ such that
 - 1. f is convex.

- **Domain** \mathcal{X} will be a set of diameter D in \mathbb{R}^d .
- ► Function, Oracle class O consists of all tuples {f, O} such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.

- **Domain** \mathcal{X} will be a set of diameter D in \mathbb{R}^d .
- ► Function, Oracle class O consists of all tuples {f, O} such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_2 \leq B$.

- **Domain** \mathcal{X} will be a set of diameter D in \mathbb{R}^d .
- ► Function, Oracle class O consists of all tuples {f, O} such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_2 \leq B$.

Our Goal:

 $\begin{array}{lll} \blacktriangleright & \mbox{Characterize} \\ & \mathcal{E}(T,\mathcal{W}) := & \inf_{\pi \in \Pi_T} \inf_{\{W_t\}_{t \in [T]} \in \mathcal{W}} \sup_{\{f,O\} \in \mathcal{O}} \mathbb{E}\left[f(x(\pi,Q))\right] - f^* \\ & \mbox{Worst-case gap to optimality using "joint-best"} \\ & T \mbox{ query optimization algo and coding scheme.} \end{array}$

- **Domain** \mathcal{X} will be a set of diameter D in \mathbb{R}^d .
- ► Function, Oracle class O consists of all tuples {f, O} such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_2 \leq B$.

Our Goal:

2. Lower Bounds for Information-Constrained Optimization

For T large enough,

(Private Optimization) and $\varepsilon \in [0,1]$,

$$\mathcal{E}(T,\mathcal{W}_{\texttt{priv},arepsilon}) \geq rac{DB}{\sqrt{T}} \cdot \sqrt{rac{d}{arepsilon^2}}.$$

For T large enough, (Private Optimization) and $\varepsilon \in [0, 1]$, $\mathcal{E}(T, \mathcal{W}_{\texttt{priv}, \varepsilon}) \geq \frac{DB}{\sqrt{T}} \cdot \sqrt{\frac{d}{\varepsilon^2}}.$

(Communication-Constrained Optimization) and $r \in [d]$,

$$\mathcal{E}(T, \mathcal{W}_{\operatorname{com}, r}) \geq rac{DB}{\sqrt{T}} \cdot \sqrt{rac{d}{r}}.$$

For T large enough, (Private Optimization) and $\varepsilon \in [0, 1]$, $\mathcal{E}(T, \mathcal{W}_{\texttt{priv}, \varepsilon}) \geq \frac{DB}{\sqrt{T}} \cdot \sqrt{\frac{d}{\varepsilon^2}}.$

(Communication-Constrained Optimization) and $r \in [d]$,

$$\mathcal{E}(T, \mathcal{W}_{\operatorname{com}, r}) \geq rac{DB}{\sqrt{T}} \cdot \sqrt{rac{d}{r}}.$$

(Random Coordinate descent)

$$\mathcal{E}(T, \mathcal{W}_{\texttt{obl}}) \geq rac{DB}{\sqrt{T}} \cdot \sqrt{d}.$$

For T large enough, (Private Optimization) and $\varepsilon \in [0, 1]$, $\mathcal{E}(T, \mathcal{W}_{\texttt{priv}, \varepsilon}) \geq \frac{DB}{\sqrt{T}} \cdot \sqrt{\frac{d}{\varepsilon^2}}.$

(Communication-Constrained Optimization) and $r \in [d]$,

$$\mathcal{E}(T, \mathcal{W}_{\texttt{com}, r}) \geq rac{DB}{\sqrt{T}} \cdot \sqrt{rac{d}{r}}.$$

(Random Coordinate descent)

$$\mathcal{E}(T,\mathcal{W}_{\mathtt{obl}}) \geq rac{DB}{\sqrt{T}} \cdot \sqrt{d}.$$

These LBs are tight and achieved by nonadaptive gradient coding.

3. Proof

Similar to [Nemirovski, Yudin 83], [Agarwal, Bartlett, Ravikumar, Wainwright 12].

1. Domain:
$$\mathcal{X} = rac{D}{2\sqrt{d}}[-1,1]^d.$$

2. Difficult subclass of functions and oracle:

$$f_V(x) := \frac{B\delta}{\sqrt{d}} \sum_{i=1}^d V(i)x(i), \ \hat{g}_t(i) = \begin{cases} +B/\sqrt{d} & \text{w.p. } (1+\delta V(i))/2\\ -B/\sqrt{d} & \text{w.p. } (1-\delta V(i))/2 \end{cases}$$

where $V \sim \text{Uniform}\{-1, +1\}^d$.

3. Average Mutual Information Bound:

$$\mathbb{E}\left[f_V(x_T)\right] - f^* \ge \frac{BD\delta}{4} \left(1 - \sqrt{\frac{2}{d} \sum_{i=1}^d I(V(i) \land \{Y_t\}_{t \in [T]})}\right).$$

1. Domain:
$$\mathcal{X} = rac{D}{2\sqrt{d}}[-1,1]^d.$$

2. Difficult subclass of functions and oracle:

$$f_V(x) := \frac{B\delta}{\sqrt{d}} \sum_{i=1}^d V(i)x(i), \ \hat{g}_t(i) = \begin{cases} +B/\sqrt{d} & \text{w.p. } (1+\delta V(i))/2\\ -B/\sqrt{d} & \text{w.p. } (1-\delta V(i))/2 \end{cases}$$

where $V \sim \text{Uniform}\{-1, +1\}^d$.

3. Average Mutual Information Bound:

$$\mathbb{E}\left[f_V(x_T)\right] - f^* \ge \frac{BD\delta}{4} \left(1 - \sqrt{\frac{2}{d} \sum_{i=1}^d I(V(i) \land \{Y_t\}_{t \in [T]})}\right).$$

1. Domain:
$$\mathcal{X} = rac{D}{2\sqrt{d}}[-1,1]^d.$$

2. Difficult subclass of functions and oracle:

$$f_V(x) := \frac{B\delta}{\sqrt{d}} \sum_{i=1}^d V(i)x(i), \ \hat{g}_t(i) = \begin{cases} +B/\sqrt{d} & \text{w.p. } (1+\delta V(i))/2\\ -B/\sqrt{d} & \text{w.p. } (1-\delta V(i))/2 \end{cases}$$

where $V \sim \text{Uniform}\{-1, +1\}^d$.

3. Average Mutual Information Bound:

$$\mathbb{E}\left[f_V(x_T)\right] - f^* \ge \frac{BD\delta}{4} \left(1 - \sqrt{\frac{2}{d} \sum_{i=1}^d I(V(i) \land \{Y_t\}_{t \in [T]})}\right).$$

1. Domain:
$$\mathcal{X} = rac{D}{2\sqrt{d}}[-1,1]^d.$$

2. Difficult subclass of functions and oracle:

$$f_V(x) := \frac{B\delta}{\sqrt{d}} \sum_{i=1}^d V(i)x(i), \ \hat{g}_t(i) = \begin{cases} +B/\sqrt{d} & \text{w.p. } (1+\delta V(i))/2\\ -B/\sqrt{d} & \text{w.p. } (1-\delta V(i))/2 \end{cases}$$

where $V \sim \text{Uniform}\{-1, +1\}^d$.

3. Average Mutual Information Bound:

$$\mathbb{E}\left[f_V(x_T)\right] - f^* \ge \frac{BD\delta}{4} \left(1 - \sqrt{\frac{2}{d} \sum_{i=1}^d I(V(i) \land \{Y_t\}_{t \in [T]})}\right).$$

Prior work gets a larger mutual information: $I(V \land \{Y_t\}_{t \in [T]})$.

1. Domain:
$$\mathcal{X} = rac{D}{2\sqrt{d}}[-1,1]^d.$$

2. Difficult subclass of functions and oracle:

$$f_V(x) := \frac{B\delta}{\sqrt{d}} \sum_{i=1}^d V(i)x(i), \ \hat{g}_t(i) = \begin{cases} +B/\sqrt{d} & \text{w.p. } (1+\delta V(i))/2\\ -B/\sqrt{d} & \text{w.p. } (1-\delta V(i))/2 \end{cases}$$

where $V \sim \text{Uniform}\{-1, +1\}^d$.

3. Average Mutual Information Bound:

$$\mathbb{E}\left[f_V(x_T)\right] - f^* \ge \frac{BD\delta}{4} \left(1 - \sqrt{\frac{2}{d} \sum_{i=1}^d I(V(i) \land \{Y_t\}_{t \in [T]})}\right).$$

Prior work gets a larger mutual information: $I(V \land \{Y_t\}_{t \in [T]})$. Can bound average mutual information using: [J Acharya, C Canonne, Z Sun, and H Tyagi, "Unified lower bounds for interactive high-dimensional estimation under information constraints," 2020] 1. Quadratic functions of the form $\|x-\mu_v\|_2^2$ are the bottlenecks.

- 1. Quadratic functions of the form $\|x-\mu_v\|_2^2$ are the bottlenecks.
- 2. The gradients are no longer independent of the queried point introduces complicated correlation between V and the coded sequence of gradients.

- 1. Quadratic functions of the form $\|x-\mu_v\|_2^2$ are the bottlenecks.
- 2. The gradients are no longer independent of the queried point introduces complicated correlation between V and the coded sequence of gradients.
- 3. Need upper bounds on MI for adaptive protocols to even prove nonadaptive lower bounds.

- 1. Quadratic functions of the form $\|x-\mu_v\|_2^2$ are the bottlenecks.
- 2. The gradients are no longer independent of the queried point introduces complicated correlation between V and the coded sequence of gradients.
- 3. Need upper bounds on MI for adaptive protocols to even prove nonadaptive lower bounds.
- 4. Even here, adaptive gradient coding does not help.

- 1. Quadratic functions of the form $\|x-\mu_v\|_2^2$ are the bottlenecks.
- 2. The gradients are no longer independent of the queried point introduces complicated correlation between V and the coded sequence of gradients.
- 3. Need upper bounds on MI for adaptive protocols to even prove nonadaptive lower bounds.
- 4. Even here, adaptive gradient coding does not help.

So, is there a class of optimization problem where adaptivity helps?

4. Adaptivity Helps!

A structured optimization problem

For $\mathcal{X} = [-1, 1]^d$, consider

$$\min_{\mathcal{X}} \|x - v\|_2^2,$$

where $v \in [-1, 1]^d$ is *s*-block sparse. That is,

- 1. Only one of the block $\{is, \ldots, i(s+1)\}$ of coordinates can have non-zero values.
- 2. All the coordinates in a block have the same absolute value.

Oracle: Outputs $2(x_t - Z_t)$, where $\{Z_t\}_{t=1}^{\infty}$ is i.i.d., $Z_1 = \{-1, 1\}^d$, and $\mathbb{E}[Z_1] = v$.

Channel Constraint: Algorithm can only see one coordinate of the gradient estimate. (RCD channel family)

Lower bound for nonadaptive protocols:

For any nonadaptive protocol we can find a block-sparse v s.t.

$$\mathbb{E}\left[\|x_T - v\|_2^2\right] \ge \frac{ds}{T}.$$

Upper bound for a adaptive protocol:

There exist an adaptive protocol such that

$$\mathbb{E}\left[\|x_T - v\|_2^2\right] \lessapprox \frac{d + s^2}{T}$$

The Adaptive Protocol

- 1. (Exploration Phase): Use the first T/2 queries to find the non-sparse block.
 - 1.1 Sample a representative coordinate from each block $Ts/2d\ {\rm times}.$
 - 1.2 Select the block with absolute largest sample mean.
- 2. (Exploitation Phase): Use the last T/2 iterations to sample all the s coordinates within the chosen block T/2s times.
- 3. (Final Estimate):
 - 3.1 For all the coordinates outside the chosen block set the mean estimate to be 0.
 - 3.2 For all the coordinates within the chosen block use the sample mean estimate.

1. Adaptive gradient coding doesn't help for standard optimization.

- 1. Adaptive gradient coding doesn't help for standard optimization.
- 2. For structured optimization problems, adaptive coding does help.

- 1. Adaptive gradient coding doesn't help for standard optimization.
- 2. For structured optimization problems, adaptive coding does help.
- 3. Adaptive techniques useful for proving nonadaptive lower bounds.

- 1. Adaptive gradient coding doesn't help for standard optimization.
- 2. For structured optimization problems, adaptive coding does help.
- 3. Adaptive techniques useful for proving nonadaptive lower bounds.

Thank You!