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Abstract—We consider distributed optimization over a d-
dimensional space, where K remote clients send coded gradient
estimates over an additive Gaussian Multiple Access Channel
(MAC) with noise variance σ2

z . Furthermore, the codewords from
the K clients must satisfy the average power constraint of P ,
resulting in a signal-to-noise ratio (SNR) of KP/σ2

z . In this
paper, we study the fundamental limits imposed by MAC on the
convergence rate of any distributed optimization algorithm and
design optimal communication schemes to achieve these limits.
Our first result is a lower bound for the convergence rate showing
that compared to the centralized setting, communicating over a
MAC imposes a slowdown of

√
d/ 1

2
log(1 + SNR) on any protocol.

Next, we design a computationally tractable digital communica-
tion scheme that matches the lower bound to a logarithmic factor
in K when combined with a projected stochastic gradient descent
algorithm. At the heart of our communication scheme is a careful
combination of several compression and modulation ideas such as
quantizing along random bases, Wyner-Ziv compression, modulo-
lattice decoding, and amplitude shift keying. We also show that
analog coding schemes, which are popular due to their ease of
implementation, can give close to optimal convergence rates at
low SNR but experience a slowdown of roughly

√
d at high SNR.

I. INTRODUCTION

In over-the-air distributed optimization [1], [2], the server
wants to minimize an unknown function by getting gradi-
ent updates from remote clients. In this setting, the clients
must communicate their gradient updates over-the-air, namely
through a wireless communication channel, to the server. Due
to its applications in federated learning [3], many interesting
schemes have been recently proposed for this problem [4]–
[11]. However, a clear understanding of the fundamental limits
of over-the-air distributed optimization is not present. In this
paper, we close this gap by characterizing the fundamental
limits imposed on first-order distributed optimization due to
over-the-air gradient communication. We also design compu-
tationally tractable over-the-air optimization protocols which
are almost optimal.

We consider the setting where a server wants to minimize
an unknown smooth convex function with domain in Rd by
making gradient queries to K clients. Each of the K clients
can generate gradient estimates within a bounded Euclidean
distance σ of the true gradient. The clients can communicate
their gradient estimates over an additive Gaussian Multiple
Access Channel (MAC) with variance σ2

z . Furthermore, each
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client’s communication must also satisfy a power constraint of
P , which results in a signal-to-noise ratio (SNR) of KP/σ2

z .
We establish an information-theoretic lower bound on the con-
vergence rate of any over-the-air optimization protocol. Our
lower bound shows that there is

(√
d

min( 1
2 log(1+SNR),d)

)
factor

slowdown in convergence rate of any over-the-air optimization
protocol when compared to that of centralized setting. Next,
we design a digital, computationally tractable communication
scheme that, combined with the standard projected stochastic
gradient descent (PSGD) algorithm, almost matches this lower
bound.

We elaborate on several key ideas in our communication
scheme. In this scheme, we divide the clients into two halves
and send the gradients updates from the first half of the
clients to form a preliminary estimate. We then employ Wyner-
Ziv compression to send gradient updates from the second
half of clients. This first step is crucial in getting close-to-
optimal dependence on the parameter σ in the convergence
rate. We also employ quantizing along random bases to get
optimal dependence on the dimension d in the convergence
rate. Finally, to send a d-dimensional gradient update in a
minimum number of channel uses, we use lattice encoding and
a modulo lattice decoder, and amplitude shift keying (ASK)
modulation.

We also derive tight lower and upper bounds on the per-
formance of analog schemes. Our bounds show that analog
schemes are close to the optimal performing schemes at low
SNR, but they are highly suboptimal at high SNR and have a
slowdown of

√
d as SNR tends to infinity. Table 1 provides a

concise summary of all our results.
Our work is closely related to [12] and [13]. [12], too,

studies fundamental limits of over-the-air optimization, but
they do so in the single client setting and when the communi-
cation channel is the more straightforward additive Gaussian
noise channel. The application of distributed optimization
considered in [13, Section 5] is similar to ours. However, in
their setup, the K remote clients can perfectly communicate
any update up to r bits. While the more complicated channel
considered in this paper prohibits the direct application of
schemes from these papers, we build on the ideas proposed in
these two papers to come up with our almost optimal scheme.

In a slightly different direction, distributed optimization
with compressed gradient estimates has also been extensively
studied in recent years (see, for instance, [14]–[32]). Here
gradient compression is employed to mitigate the slowdown
in convergence when full gradients are communicated.
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(Theorem III.3) (Theorem IV.3) (Theorem V.2) (Theorem V.3)

Table 1: Convergence rates of our proposed schemes for large K, N , and for 1
2 log(1 + SNR) less than d.

II. SETUP

Consider the following distributed optimization problem.
A server wants to minimize an unknown convex function
f : X → R over its domain X ⊂ Rd using gradient updates
from K remote clients. At each iteration, the server queries
the clients for gradient estimates of the unknown function.
On receiving the query, each of the K clients generates a
stochastic gradient estimate of the function at the queried
point, encodes it, and transmits it over a MAC. The output of
this channel is available to the server, which it first decodes
and then uses it to update the query point for the next iteration
using a first-order optimization algorithm (such as Stochastic
Gradient Descent). This setting models practical distributed
optimization scenarios arising in federated learning and is of
independent theoretical interest.

Our goal is twofold: 1) To understand the fundamental limits
imposed by communicating gradients over a MAC on the
convergence rate; 2) To design the encoding algorithms at the
clients, and the decoding and optimization algorithm at the
server to come close to the aforementioned fundamental limit.

A. Functions and gradient estimates

a) Convex and smooth function family: We assume that
the server wants to minimize an unknown function f which
is convex and L-smooth functions. That is, for all1 x, y ∈ X ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), (1)

f(y)− f(x) ≤ ∇f(x)⊤(y − x) +
L

2
∥y − x∥2. (2)

b) Stochastic gradient estimates: We assume that client
Ck, k ∈ [K], outputs a noisy gradient ĝk(x) at a query point
x ∈ X which satisfies the following standard conditions:

E [ĝk(x)|x] = ∇f(x), (unbiasedness) (3)

E
[
∥ĝk(x)−∇f(x)∥2|x

]
≤ σ2, (bounded deviation) (4)

∥ĝk(x)∥2 ≤ B2. (a.s. bounded estimate) (5)

Denote by O the set of tuple (f, C) of functions and clients
satisfying the conditions (1), (2), (3), (4) and (5).

B. Communication schemes and the multiple access channel

For the tth query xt made by the server, each of the K
clients generates gradient estimates {ĝk,t}Kk=1. In our setting,
the gradient estimates are not directly available to the server.
They are first encoded by the clients for error correction and

1∥ · ∥ refers to the standard euclidean norm.

then sent over MAC, and only the output of the channel is
available to the server. For all the clients, we consider encoders
of length ℓ with average power less than P . That is, the
encoder φk : Rd × U → Rℓ used by client Ck satisfies the
power constraint

E
[
∥φk(ĝk,t, U)∥2

]
≤ ℓP ∀k ∈ [K], (6)

where U is string of public randomness available to all the k
clients’ encoders and the server’s decoder, and U is the space
of such random strings. For convenience, we will drop the
argument U from the rest of the paper.

The encoded codewords {φk(ĝk,t)}Kk=1 are sent over MAC
using ℓ channel uses. The server sees the channel output Yt ∈
Rℓ given by

Yt(j) =

K∑
k=1

φk(ĝk,t)(j) + Zt(j) ∀j ∈ [ℓ], (7)

where Zt(j) is Gaussian distributed with mean 0 and variance

σ2
z . We denote the signal-to-noise ratio by SNR :=

KP

σ2
z

.

The decoder ψ : Rℓ × U → Rd at the server projects back
the ℓ-length channel output to a vector in Rd, which the
optimization algorithm uses to update the query point.

We say that Q is a (d, ℓ, P,K)-communication scheme if
it is a tuple (φ1, . . . , φk, ψ), where φk, k ∈ [K], and ψ
are as described above. Denote by Qℓ the set of all possible
(d, ℓ, P,K)-communication schemes.

C. Over-the-air optimization

We now describe the optimization algorithm π interacting
with the tuple (φ1, . . . , φk, ψ) ∈ Qℓ. At iteration t, the
optimization algorithm uses all the previous query points,
{xt′}t−1

t′=1, and the decoded gradient estimates, {ψ(Yt′)}t−1
t′=1,

to decide on the query point xt ∈ X . The server then
queries the clients at the point xt, resulting in a gradient
estimate ψ(Yt). This continues for T iterations, after which
the algorithm outputs a point xT ∈ X .

Denote by ΠT,ℓ the set of all optimization algorithms
π making T queries to the clients and interacting with a
(d, ℓ, P,K)-communication scheme.

For an optimization algorithm π ∈ ΠT,ℓ and a communi-
cation scheme Q ∈ Qℓ, we call the tuple (π,Q) an over-the-
air optimization protocol. For a tuple of function and clients
(f, C) ∈ O, we measure the performance of any over-the-air
optimization protocol (π,Q) by the convergence error

E(f, C, π,Q) := E [f(x̄T )]−min
x∈X

f(x).



We will study this error when the total number of channel uses,
Tℓ, is restricted to be at most N . We can use communication
schemes of arbitrary length ℓ. Note, however, that to increase
the length ℓ, we must decrease the number of queries T , since
the total number of channel uses is limited to N. Conversely,
to increase the number of queries, we must decrease the length
of the communication schemes. Let Λ(N) := {(π,Q) : π ∈
ΠT,ℓ, Q ∈ Qℓ, T ℓ ≤ N} be the set of over-the-air optimization
protocols with at most N channel uses. The smallest worst-
case error possible over all such protocols is given by

E∗(N,K, SNR,X ) := inf
(π,Q)∈Λ(N)

sup
(f,C)∈O

E(f, C, π,Q).

Let X := {X : supx,y∈X ∥x−y∥ ≤ D}. In this paper, we will
characterize2 E∗(N,K, SNR) := sup

X∈X
E∗(N,K, SNR,X ).

III. PRELIMINARIES AND AN INFORMATION THEORETIC
LOWER BOUND

A. A benchmark from prior results

We recall the results for the centralized case, which we
can model by setting SNR = ∞. In this case, clients can
perfectly communicate the gradient estimates in only one
channel use. A direct application of [33, Theorem 6.3] leads
to the following upper bound on E∗(N,K,∞) which serves
as a basic benchmark for our results in this paper.

Theorem III.1. E∗(N,K,∞) ≤
√
2Dσ√
KN

+
LD2

2N
.

B. A general convergence bound

Throughout the paper, we will use projected stochastic gra-
dient descent (PSGD) as the first-order optimization algorithm
π; the overall over-the-air optimization protocol is described
in Algorithm 2. PSGD proceeds as stochastic gradient descent
with the additional projection step where it projects the updates
back to domain X using the map ΓX (y) := minx∈X ∥x− y∥,
∀ y ∈ Rd.

1: for t = 0 to T − 1 do
2: xt+1=ΓX (xt − ηtψ(Yt))

3: Output x̄T = 1
T

∑T
t=1 xt

Algorithm 2: PSGD for over-the-air optimization

The convergence rate of Algorithm 2 is controlled by the
square root of worst-case mean square error (MSE) α(Q) and
the worst-case bias β(Q) of the gradient estimates decoded by
the server. They are defined as follows:

α(Q) := sup
∀x,k∈[K],ĝk∈Rd:

E∥ĝk−∇f(x)∥2≤σ2

√
E [∥ψ(Y )−∇f(x)∥2],

β(Q) := sup
∀x,k∈[K],ĝk∈Rd:

E∥ĝk−∇f(x)∥2≤σ2

∥E [ψ(Y )]−∇f(x)∥,

2While our upper bound techniques can handle an arbitrary, fixed X , the
supremum over X is to ensure that the lower bounds are independent of the
geometry of set X .

where for i ∈ [d], Y (i) satisfies (7) and the expectation is
taken over all the randomness in the set up. We now recall a
lemma from [13] that upper bounds the convergence rate of
Algorithm 2 in terms of α(Q) and β(Q).

Lemma III.2 ([13, Lemma II.2]). Let π be the PSGD
algorithm making T queries to the clients and Q be any
communication scheme in Qℓ. Then, we have

sup
(f,O)∈O

E(f, C, π,Q) ≤
√
2Dα(Q)√

T

+ β(Q)

(
D +

DB

α(Q)
√
2T

)
+
LD2

2T
.

with the learning rate ηt=min{ 1
L ,

D
α(Q)

√
T
},∀t∈[T ]. Further,

the over-the-air optimization protocol uses the MAC channel
N = T · ℓ times.

Thus it is enough to control the mean square error and bias
of the communication scheme to upper bound the convergence
rate of the corresponding over-the-air optimization protocol.

C. Lower bound for over-the-air optimization

We now present an information-theoretic lower bound for
any over-the-air optimization protocol. We note that [12]
shows a similar lower bound in the single client setting. We
build on their proof and extend the result to the more general
setting of K clients. The key step involves showing that
over-the-air optimization over parallel independent additive
Gaussian noise channel is much easier than over MAC and
then proceeding as in [12].

Theorem III.3. For some universal constant c ∈ (0, 1) and
N ≥ d

K log(1+SNR) , we have

E∗(N,K, SNR) ≥ cDσ√
KN

√
d

min{d, 12 log(1 + SNR)}
.

Our lower bound states that, except for very high values of
SNR, any over-the-air optimization protocol will experience a
slowdown by a factor of

√
d

1
2 log(1+SNR)

over the convergence
rate of centralized setting.

IV. A DIGITAL COMMUNICATION SCHEME FOR
OVER-THE-AIR OPTIMIZATION

In this section, we present our main result: a digital com-
munication scheme that, combined with PSGD, will almost
match the lower bound in Theorem III.3. Our scheme below
is “universal” in the sense that the clients don’t require the
knowledge of σ for the transmission of gradient estimates.

A. Warm-up scheme UQ-OTA

For ease of presentation, we first present a warm-up scheme
based on uniform quantization. We will build on the com-
ponents described below to present our final digital scheme.
Throughout the description of our schemes, we omit the
subscript t for convenience.



a) Uniform quantization: Each client k first divides the
gradient estimate ĝk by the number of clients K to form g̃k and
quantizes it using an unbiased v-level coordinate-wise uniform
quantizer v-CUQ. The v-CUQ takes ith coordinate g̃k(i) ∈
[−B

K ,
B
K ] as input and outputs zk,i ∈ {0, ..., v − 1} as per the

following rule:

zk,i =


⌈
(v−1)(Kg̃k(i)+B)

2B

⌉
, w.p. g̃k(i)−⌊ g̃k(i)K(v−1)

2B ⌋
2B/(K(v−1))

⌊ (v−1)(Kg̃k(i)+B)
2B ⌋, w.p.

⌈
g̃k(i)K(v−1)

2B

⌉
−g̃k(i)

2B/(K(v−1))

.

Note that the zk,i suffices to form an unbiased estimate of
g̃k(i). Define Qk := {zk,i : i ∈ [d]} as the quantized output
for client k.

b) Lattice encoding and ASK modulation using
M(Qk, v, p): Client k sends {zk,i}i∈[d] over MAC by first
encoding them as one-dimensional lattice points and then
modulating each lattice point onto an ASK code. This entire
procedure is denoted by M(Qk, v, p), where parameters v
and p will be specified later, and is described below.

For some parameter3 p≤d, the set of coordinates [d] is
equally partitioned into d/p blocks. For j ∈ [d/p], the jth
block is given by Bj := {(j − 1)p+ 1, ..., (j − 1)p+ p}. For
each Bj , the corresponding quantized values are mapped onto
an one-dimensional lattice generated by bases {w0, ..., wp−1}.
Denote by τk,j the lattice point corresponding to block Bj , of
the kth client. Symbolically,

τk,j = w0Qk(Bj(1)) + · · ·+ wp−1Qk(Bj(p)),

where w = K(v − 1) + 1. Our choice of w is to ensure a
successful recovery of the sum of client updates at the server.

To satisfy the power constraints of MAC, we then modulate
each τk,j to [−

√
P ,

√
P ] using an ASK code.

Definition IV.1. A code is an Amplitude Shift Keying
(ASK) code satisfying the average power constraint (6) if
the range A of the encoder mapping is given by A :={
−
√
P + (i− 1) · 2

√
P

r−1 : i ∈ [r]
}

, for some r ∈ N. Note that
this is a code of length 1.

Since each τk,j takes values in {0, ..., w
p−1
K }, we set size

of ASK code r = wp−1
K + 1 to establish one-to-one corre-

spondence. Consequently, we have ℓ = d/p and φk(j) =
A(τk,j + 1),∀j ∈ [d/p], k ∈ [K] in (7).

c) Lattice decoding at server L(Y, v, p): On the server
side, our goal is to compute an unbiased estimate of sum∑

k g̃k from Y . Therefore, it simply suffices to recover just
the sum

∑
k Qk, instead of individual Qks.

Towards that, each coordinate Y (j), j ∈ ℓ, is first fed into
a coordinate-wise minimum-distance (MD) decoder, thereby
locating the nearest possible point Ŷ (j) in {−K

√
P +

2(i−1)
√
P

r−1 : i ∈ [r]}. Using the one-to-one correspondence,
the decoded point Ŷ (j) is then mapped back to the same
lattice generated using {w0, ..., wp−1} to decode the sum of
transmitted lattice points

∑
k τk,j . Denote by ˆ̄τj the decoded

lattice point can be expressed as

3For simplicity, we assume p divides d.

ˆ̄τj = w0λ(Bj(1)) + ...wp−1λ(Bj(p)),

for some vector λ ∈ {0, ...,K(v− 1)}d. Therefore, to recover
the desired sum, the server uses a modulo-lattice decoder for
each Bj , j ∈ [d/p], that successively outputs the coordinates
of λ. In particular ∀i ∈ [p],

λ(Bj(i)) =
ˆ̄τj − λ(Bj(1))...− wi−2λ(Bj(i− 1))

wi−1
mod w.

Note that such recovery is possible with the current choice of
w since every coordinate of

∑
k∈[K] Qk is less than w. The

value λ obtained above is finally used to form ψ(Y ) to be
used in Algorithm 2 as

ψ(Y ) = −B + λ · 2B

K(v − 1)
. (8)

Theorem IV.2. Let π be the optimization algorithm described
in Algorithm 2, where ψ(Y ) is obtained in (8) with v =

√
d+1.

Then, for a universal constant c1 > 0 and integers p,K such
that d ≥ p ≥ 1 and K ≥ B2/σ2, we have

sup
(f,C)∈O

E(f, C, π,Q) ≤ c1DB√
KN

√
d

p
+
LD2d

2Np
,

where p = ⌊
log

(
1+

√
2KSNR

ln(KN1.5)

)
log(Kd) ⌋.

Proof sketch: It is easy to see that under perfect decoding
β(Q) = 0 and α(Q) ≤ 4B

√
d√

K(v−1)
, where Q is UQ-OTA.

We can then use Lemma III.2 to upper bound the expected
optimization error under perfect decoding. To upper bound the
expected optimization error when there is a channel decoding
error, note that the optimization error is trivially bounded by
DB. It only remains to bound the probability of channel
decoding. The proof is then completed by noting that our
choice of size of ASK code r, leads to the probability of
channel decoding error being at the most 1

K
√
N

.

B. Wyner-Ziv digital scheme WZ-OTA

We are now ready to present our main digital scheme
WZ-OTA which significantly improves over the performance
of UQ-OTA and is almost optimal.

In this scheme, we partition the clients C equally into two
sets C1 and C2. In each iteration t, the clients in C1 construct
the side information at the server, and the remaining clients
in C2 exploit this information to form a Wyner-Ziv estimate
of ∇f(xt) at the server.

a) Side information construction: The clients in C1 use
the previously described UQ-OTA communication scheme to
form a preliminary estimate (8) at the server. This requires
ℓ = d/p channel uses. Note that the clients in C2 send 0
during these transmissions.

The server divides this preliminary estimate by K/2 to form
S and then rotates it by a random matrix R to form the side
information RS. Here R = 1/

√
dHD′ where H is the Walsh-

Hadamard4 matrix [34], and D′ is a random diagonal matrix

4Without loss of generality, we assume d is a power of 2. If not, we can
zero-pad the gradient estimates and make the resulting dimension power of
2; this only adds a constant multiplicative factor to our upper bounds.



with non-zero entries generated uniformly and independently
from {−1,+1}.

b) The Wyner-Ziv estimate: The clients in C2 use a
Wyner-Ziv estimator boosted DAQ from [13] to construct the
final estimate, while those in C1 tranmit 0 in all channel uses.
The boosted DAQ uses the idea of correlated sampling be-
tween the input and the side information to reduce quantization
error. Specifically, for an input |x| ≤ M at the encoder and
a corresponding side information |y| ≤M at the decoder, the
boosted DAQ estimate is given by

X̂ = (2M/I)
∑
i∈[I]

(
1{Ui≤x} − 1{Ui≤y}

)
+ y, (9)

where each Ui ∼ unif[−M,M ] is a uniform random variable.
Note that X̂ is an unbiased estimate of x with MSE at most
2M |x− y|/I .

In our setting, each client k ∈ C2 first pre-processes its
noisy estimate as g̃k = 2ĝk

K and uses shared randomness to
draw I uniform random vectors Uk,i ∈ [−M,M ]d, i ∈ [I],
independently. The choice of M and I are crucial for our
scheme and will be specified later. Using shared randomness
again, each g̃k is rotated using the same random matrix R used
earlier. Each coordinate of this rotated vector is then quantized
to an element in {0, ..., I} as

Qk(j) =
∑
i∈[I]

1{Uk,i(j)≤Rg̃k(j)}, ∀j ∈ [d].

As an aside, it is instructive to note that under the event
Vj = {|RS(j)| ≤ M, |Rg̃k(j)| ≤ M}, Qk(j) suffices to
form an unbiased estimate of Rg̃k(j) using boosted DAQ
(see (9)). Coming back to our scheme, each client k transmits
the quantized vector Qk over the MAC channel by first using
the lattice encoder and then using ASK modulation. The
entire operation is described by the function M(Qk, v

′, p′) (see
Section IV-A) with v′ = I + 1 and p′ to be specified shortly.
Note that there are ℓ = d/p′ channel uses per iteration.

At the server, the channel output Y ∈ Rd/p′
is passed

through L(Y, v′, p′) to obtain λ. Following the boosted DAQ
estimator (9), the final output ψ(Y ) is given by

ψ(Y ) = (2M/I)R−1
∑
j∈[d]

(λ(j)− ω(j)) ej + (K/2)S, (10)

where each ω(j) =
∑

k∈C2

∑
i∈[I] 1{Uk,i(j)≤RS(j)}. We next

characterise the performance of WZ-OTA.

Theorem IV.3. Let c2, c3 be positive universal constants
and π be the optimization algorithm described in Algorithm
2, where ψ(Y ) is obtained using (10) with v = 7,M =
c2B

K
√
d

√
ln(K1.5N) and I = c2

√
ln(K1.5N). Then, for inte-

gers p, p′ and K such that K ≥ B2d/σ2 and d ≥ p, p′ ≥ 1,
we have

sup
(f,C)∈O

E(f, C, π,Q) ≤ c3D
√
Bσ√

KN

√
d

q
+
LD2d

2Nq
,

where 1
q=

1
p + 1

p′ with p = ⌊
log

(
1+

√
KSNR

2 ln(KN1.5)

)
logK ⌋ and p′ =

⌊
log

(
1+

√
KSNR

2 ln(KN1.5)

)
logK+log log(N) ⌋.

Proof sketch: We follow a similar strategy as in proof of
Theorem IV.2 to upper bound the expected optimization er-
ror. Under channel decoding error, the optimization error is
bounded similarly as in the previous proof.

It only remains to bound optimization error under perfect
decoding for which we employ Lemma III.2. The key step
involved in bounding α and β is to show that the preliminary
estimate is close to the true gradient. In addition, we note
that under the event Vj as defined earlier, clients in C2
communicate unbiased gradient estimates, and the MSE can
be bounded using MSE bounds for boosted DAQ. At last, our
choice of M ensures sufficiently small probability for Vc

j ,
thus completing the proof.

Remark 1. For large K,N , we remark that the WZ-OTA com-
bined with PSGD is off only by

√
B/σ (log(K) + log logN)

factor from our lower bound. In comparison, from The-
orem IV.2, UQ-OTA combined with PSGD is off by
B/σ

√
(log(K) + log(d) + log logN). Quantization along

random bases and Wyner-ziv compression allows WZ-OTA to
improve by factors log d and

√
B/σ over UQ-OTA.

V. PERFORMANCE OF ANALOG SCHEMES

Definition V.1. A communication scheme is an analog scheme
if the encoder mapping φ is linear, i.e., φ(x) = Ax for A ∈
Rℓ×d and ℓ ≤ d. We allow random entries for A as long as the
randomness is independent of x. For the class of (d, ℓ, P,K)-
communication schemes restricted to using such analog
schemes, we denote by E∗

analog(N,K, SNR) the corresponding
min-max optimization error. Clearly, E∗

analog(N,K, SNR) ≥
E∗(N,K, SNR).

We begin by proving a lower bound for analog communi-
cation schemes.

Theorem V.2. For some universal constant c ∈ (0, 1),

and N ≥ d
K (σ2 + σ2

SNR
), we have E∗

analog(N,K, SNR) ≥
cD√
KN

√
dσ2 + dσ2

SNR
.

The following lower bound also uses affine functions as
difficult functions and builds on a class of Gaussian oracles
proposed, recently, towards proving a similar result in [12].

For our upper bound, we use the well-known scaled trans-
mission scheme from [7]. In this scheme, the gradient esti-
mates are scaled-down by

√
dP/B by every client Ck ∈ C

to satisfy the power constraint in (6), sent coordinate-by-
coordinate over d channel uses, and then scaled-up by B/

√
dP

and averaged at the server before using it in a gradient descent
procedure. It is not difficult to see the following upper bound.

Theorem V.3. Let π be the PSGD optimization algorithm
and Q be the scaled transmission communication scheme
described above. Then, we have sup(f,C)∈O E(f, C, π,Q) ≤
√
2D√
KN

√
dσ2 + dB2

SNR
+ dLD2

2N .

Remark 2. For SNR ≥ B2/σ2, Theorem V.2 shows that
compared to the centralized setting discussed in Theorem III.1,
analog schemes will have a slowdown of

√
d. However, for



small values of SNR, an analog communication scheme com-
bined with PSGD gives close optimal performance. It matches
the lower bound in Theorem III.3 up to a factor of B/σ. This
observation follows by noting that log(1 + SNR) ≈ SNR for
small values of SNR.

VI. CONCLUSION

We provide an almost complete characterization of the min-
max convergence rate of over-the-air distributed optimization.
Our bounds show that a simple analog coding scheme is
optimal at low values of SNR, but they can be far from optimal
at high values of SNR (Remark 2). This observation mirrors the
observation made by [12], albeit in the single client setting.
Furthermore, we design an explicit digital communication
scheme based on lattice coding to match our lower bound for
all values of SNR. We hope our work inspires other explicit
communication schemes for similar distributed optimization
problems. Our upper bound matches our lower bound up to
a nominal

√
logK + log logN factor (Theorem IV.3). Further

closing the gap between our upper and lower bound would lead
to new communication schemes or lower bound techniques for
distributed optimization and is an exciting research direction.
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