Limits on gradient compression for stochastic optimization

Prathamesh Mayekar

Joint work with Himanshu Tyagi

Department of ECE, Indian Institute of Science

The Setup

Classical Setup ¹

Algorithm π :

- Input: Domain \mathcal{X} , function and oracle class $\mathcal O$
- Goal: Minimize unknown function f using an oracle O, where $\{f, O\}$ belong to O.

¹Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Classical Setup ¹

Algorithm π :

- Input: Domain \mathcal{X} , function and oracle class $\mathcal O$
- Goal: Minimize unknown function f using an oracle O, where $\{f, O\}$ belong to O.

First Order Oracle *O*:

- Returns a noisy sub-gradient estimate $\hat{g}(x_t)$ for query x_t .

¹Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Classical Setup¹

Algorithm π :

- Input: Domain \mathcal{X} , function and oracle class $\mathcal O$
- Goal: Minimize unknown function f using an oracle O, where $\{f,O\}$ belong to $\mathcal{O}.$

First Order Oracle O:

– Returns a noisy sub-gradient estimate $\hat{g}(x_t)$ for query x_t .

Main Question:

Which π gives the best convergence rate?

¹Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Our Refinement

 $\hat{g}(x_t)$ can be sent to a finite precision r using a Q of our choice.

Our Refinement

 $\hat{g}(x_t)$ can be sent to a finite precision r using a Q of our choice. Reduces to classical setup if we are allowed infinite precision.

Our Refinement

 $\hat{g}(x_t)$ can be sent to a finite precision r using a Q of our choice. Reduces to classical setup if we are allowed infinite precision.

Main Question:

What is the minimum r to attain the convergence rate of classic case?

Assumptions:

• Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .

Assumptions:

- ▶ Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class \mathcal{O}_p consists of all tuples $\{f, O\}$ such that
 - 1. f is convex.

Assumptions:

- **b** Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class \mathcal{O}_p consists of all tuples $\{f, O\}$ such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.

Assumptions:

- **b** Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class \mathcal{O}_p consists of all tuples $\{f, O\}$ such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_q \leq B$, where $q = \frac{p}{n-1}$.

Assumptions:

- **b** Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class \mathcal{O}_p consists of all tuples $\{f, O\}$ such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_q \leq B$, where $q = \frac{p}{n-1}$.

Minmax optimization accuracy

$$\mathcal{E}(T,r,p) := \inf_{\pi \in \Pi_T} \inf_{Q \in \mathcal{Q}_r} \sup_{\{f,O\} \in \mathcal{O}} \mathbb{E}\left[f(x(\pi,Q))\right] - f^*$$

Assumptions:

- **b** Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class \mathcal{O}_p consists of all tuples $\{f, O\}$ such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_q \leq B$, where $q = \frac{p}{n-1}$.

Minmax optimization accuracy

$$\begin{split} \mathcal{E}(T,r,p) &:= \inf_{\pi \in \Pi_T} \inf_{Q \in \mathcal{Q}_r} \sup_{\{f,O\} \in \mathcal{O}} \mathbb{E}\left[f(x(\pi,Q))\right] - f^* \\ \text{Classical Result: } \mathcal{E}(T,\infty,p) &= \tilde{\Theta}\left(\frac{(d^{1/2-1/p} \wedge 1)DB}{\sqrt{T}}\right). \end{split}$$

Assumptions:

- **b** Domain \mathcal{X} will be the ℓ_p ball of diameter D in \mathbb{R}^d .
- \blacktriangleright Function, Oracle class \mathcal{O}_p consists of all tuples $\{f,O\}$ such that
 - 1. f is convex.
 - 2. Unbiased: $\mathbb{E}[\hat{g}(x)|x] \in \partial f(x)$.
 - 3. Almost surely norm-bounded: $\|\hat{g}(x)\|_q \leq B$, where $q = \frac{p}{n-1}$.

Minmax optimization accuracy

$$\mathcal{E}(T,r,p) := \inf_{\pi \in \Pi_T} \inf_{Q \in \mathcal{Q}_r} \sup_{\{f,O\} \in \mathcal{O}} \mathbb{E}\left[f(x(\pi,Q))\right] - f^*$$

▶ We will characterize

$$r^*(T,p) := \min\{r : \mathcal{E}(T,r,p) \approx \mathcal{E}(T,\infty,p)\},\$$

minimum precision at which the composed oracle starts behaving like the classic, unresticted oracle.

Characterizing $r^*(T,p)$

Theorem

1. For
$$1 \leq p < 2$$
,

 $r^*(T,p) \gtrsim d.$

Theorem

1. For $1 \leq p < 2$, $r^*(T,p) \gtrapprox d.$

2. For
$$2 \leq p$$
,
$$r^*(T,p) \gtrapprox d^{\frac{2}{p}} \vee \log d.$$

▶ Techniques from [Agarwal et al. 12], [Mayekar et al. 20].

Theorem 1. For $1 \le p < 2$, $r^*(T,p) \gtrsim d$. 2. For $2 \le p$, $r^*(T,p) \gtrsim d^{\frac{2}{p}} \lor \log d$.

- ► Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- We construct "difficult" oracles for optimization, compression.

Theorem

1. For $1 \le p < 2$,

 $r^*(T,p) \gtrsim d.$

$$r^*(T,p) \gtrsim d^{\frac{2}{p}} \vee \log d.$$

- ► Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- ▶ We construct "difficult" oracles for optimization, compression.
- For $p \in [1, 2)$, the same oracle is "difficult" for optimization, compression.

Theorem

1. For $1 \le p < 2$,

 $r^*(T,p) \gtrsim d.$

$$r^*(T,p) \gtrsim d^{\frac{2}{p}} \vee \log d.$$

- ► Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- ▶ We construct "difficult" oracles for optimization, compression.
- For $p \in [1, 2)$, the same oracle is "difficult" for optimization, compression.
- For $p \ge 2$, these two oracles differ:

Theorem

1. For $1 \leq p < 2$,

 $r^*(T,p) \gtrsim d.$

$$r^*(T,p) \gtrsim d^{\frac{2}{p}} \vee \log d.$$

- ► Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- ▶ We construct "difficult" oracles for optimization, compression.
- For $p \in [1, 2)$, the same oracle is "difficult" for optimization, compression.
- For $p \ge 2$, these two oracles differ:
 - \blacktriangleright The difficult optimization oracle leads to the $\log d$ bound.

Theorem

1. For $1 \leq p < 2$,

 $r^*(T,p) \gtrless d.$

$$r^*(T,p) \gtrsim d^{\frac{2}{p}} \vee \log d.$$

- ► Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- ▶ We construct "difficult" oracles for optimization, compression.
- For $p \in [1, 2)$, the same oracle is "difficult" for optimization, compression.
- For $p \ge 2$, these two oracles differ:
 - The difficult optimization oracle leads to the $\log d$ bound.
 - The difficult compression oracle gives the $d^{2/p}$ bound.

Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, \exists algorithm π such that

$$\mathcal{E}(T,\infty,p) \cdot \left(\frac{\alpha(Q;p)}{B}\right) \ge \sup_{(f,O)\in\mathcal{O}_p} \mathcal{E}(f,\pi^{QO},p)$$

Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, \exists algorithm π such that

$$\mathcal{E}(T,\infty,p)\cdot \left(\frac{lpha(Q;p)}{B}\right) \ge \sup_{(f,O)\in\mathcal{O}_p}\mathcal{E}(f,\pi^{QO},p).$$

$$\begin{split} \alpha(Q;p) &\triangleq \sup_{Y \in \mathbb{R}^d: \|Y\|_q^2 \le B^2 \text{ a.s.}} \sqrt{\mathbb{E}\left[\|Q(Y)\|_q^2\right]}, \quad p \in [1,2). \\ \alpha(Q;p) &\triangleq \sup_{Y \in \mathbb{R}^d: \|Y\|_q^2 \le B^2 \text{ a.s.}} \sqrt{\mathbb{E}\left[\|Q(Y)\|_2^2\right]}, \quad p \in [2,\infty]. \end{split}$$

Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, \exists algorithm π such that

$$\mathcal{E}(T,\infty,p)\cdot \left(rac{lpha(Q;p)}{B}
ight) \geq \sup_{(f,O)\in\mathcal{O}_p}\mathcal{E}(f,\pi^{QO},p).$$

$$\alpha(Q;p) \triangleq \sup_{Y \in \mathbb{R}^d : \|Y\|_q^2 \le B^2 \text{ a.s.}} \sqrt{\mathbb{E}\left[\|Q(Y)\|_q^2\right]}, \quad p \in [1,2).$$

$$\alpha(Q;p) \triangleq \sup_{Y \in \mathbb{R}^d : \|Y\|_q^2 \le B^2 \text{ a.s.}} \sqrt{\mathbb{E}\left[\|Q(Y)\|_2^2\right]}, \quad p \in [2,\infty].$$

Design Q such that : 1) Unbiased; 2) $\alpha(Q; p)$ is O(B); 3a) Precision is $O\left(d^{2/p} \vee \log d\right)$ for $p \in [2, \infty]$; 3b) Precision is O(d) for $p \in [1, 2)$.

Achievability for $p \in [1,2)$

Input Y such that $||Y||_q \leq B$.

Input Y such that $||Y||_q \leq B$.

Split Y such that $Y_1 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| \le c\}} e_i, \quad Y_2 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| > c\}} e_i,$

where
$$c = O\left(\frac{B \log(d^{1/2-1/q})^{1/q}}{d^{1/q}}\right)$$
.

Input Y such that $||Y||_q \leq B$.

$$\begin{split} & \text{Split } Y \text{ such that} \\ & Y_1 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| \leq c\}} e_i, \quad Y_2 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| > c\}} e_i, \\ & \text{where } c = O\left(\frac{B \log \left(d^{1/2 - 1/q}\right)^{1/q}}{d^{1/q}}\right). \end{split}$$

 Y_1 has small infinity norm; so, a uniform quantizer is good enough.

Input Y such that $||Y||_q \leq B$.

$$\begin{split} & \text{Split } Y \text{ such that} \\ & Y_1 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| \leq c\}} e_i, \quad Y_2 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| > c\}} e_i, \\ & \text{where } c = O\left(\frac{B \log (d^{1/2 - 1/q})^{1/q}}{d^{1/q}}\right). \end{split}$$

 Y_1 has small infinity norm; so, a uniform quantizer is good enough. Y_2 is sparse; so, an efficient quantizer for ℓ_2 norm is good enough.

Input Y such that $||Y||_q \leq B$.

Split Y such that $Y_1 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| \le c\}} e_i, \quad Y_2 := \sum_{i=1}^d Y(i) \mathbb{1}_{\{|Y(i)| > c\}} e_i,$ where $c = O\left(\frac{B \log(d^{1/2 - 1/q})^{1/q}}{d^{1/q}}\right).$

 Y_1 has small infinity norm; so, a uniform quantizer is good enough. Y_2 is sparse; so, an efficient quantizer for ℓ_2 norm is good enough.

Theorem

$$\begin{split} \mathbb{E}\left[Q(Y)|Y\right] &= Y; \quad \alpha(Q,p) \leq 4B; \\ \textit{Precision is } O\left(d + \frac{d}{q}\log\log(d^{1/2 - 1/q})\right) \textit{ bits.} \end{split}$$

Achievability for $p \in [2, \infty]$

 ${\rm Our} \; {\rm Quantizer} \; SimQ$

Input Y such that $\left\|Y\right\|_q \leq B$

Input Y such that $||Y||_q \leq B \Rightarrow ||Y||_1 \leq Bd^{1/p}$.

Encoder

Sample an i from the set {0} ∪ [d] with a pmf P, where

▶
$$\forall i \in [d], P(i) = |Y(i)|/Bd^{1/p}$$

$$\blacktriangleright P(0) = 1 - \|Y\|_1 / Bd^{1/p}$$

Input Y such that $||Y||_q \leq B \Rightarrow ||Y||_1 \leq Bd^{1/p}$.

Encoder

Sample an i from the set {0} ∪ [d] with a pmf P, where

$$\blacktriangleright \quad \forall i \in [d], \ P(i) = |Y(i)|/Bd^{1/p}$$

$$\blacktriangleright P(0) = 1 - \|Y\|_1 / Bd^{1/p}$$

Send i and sign of Y(i).

Input Y such that $||Y||_q \leq B \Rightarrow ||Y||_1 \leq Bd^{1/p}$.

Encoder

- Sample an i from the set {0} ∪ [d] with a pmf P, where
 - $\blacktriangleright \quad \forall i \in [d], \ P(i) = |Y(i)|/Bd^{1/p}$

$$\blacktriangleright P(0) = 1 - \left\| Y \right\|_1 / B d^{1/p}$$

Send i and sign of Y(i).

Decoder

• Output $Bd^{1/p} \cdot sign(Y(i)) \cdot e_i$

Input Y such that $||Y||_q \leq B \Rightarrow ||Y||_1 \leq Bd^{1/p}$.

Encoder

Sample an i from the set {0} ∪ [d] with a pmf P, where

$$\blacktriangleright \quad \forall i \in [d], \ P(i) = |Y(i)|/Bd^{1/p}$$

$$\blacktriangleright P(0) = 1 - \|Y\|_1 / Bd^{1/p}$$

Decoder

• Output
$$Bd^{1/p} \cdot sign(Y(i)) \cdot e_i$$

Theorem

 $\mathbb{E}\left[Q(Y)|Y
ight] = Y$; Precision is $\log(2d+1)$ bits; $\alpha(Q,p) = Bd^{1/p}$.

- Apply $SimQ \ k$ times.
- Output the average of k outputs of SimQ.

- Apply $SimQ \ k$ times.
- Output the average of k outputs of SimQ.
- (Compression step) Represent the vector of indices using its type.

- Apply $SimQ \ k$ times.
- Output the average of k outputs of SimQ.
- (Compression step) Represent the vector of indices using its type.

Theorem

$$\begin{split} \mathbb{E}\left[Q(Y)|Y\right] &= Y; \quad \textit{Precision is } k\log e + k\log(\frac{d}{k} + 1) + k \textit{ bits}; \\ \alpha(Q,p) &\leq \sqrt{\frac{B^2 d^{\frac{2}{p}}}{k} + B^2}. \end{split}$$

- Apply $SimQ \ k$ times.
- Output the average of k outputs of SimQ.
- (Compression step) Represent the vector of indices using its type.

Theorem

$$\begin{split} \mathbb{E}\left[Q(Y)|Y\right] &= Y; \quad \textit{Precision is } k \log e + k \log(\frac{d}{k} + 1) + k \textit{ bits}; \\ \alpha(Q,p) &\leq \sqrt{\frac{B^2 d^{\frac{2}{p}}}{k} + B^2}. \end{split}$$

By choosing $k = d^{\frac{2}{p}}$, we get $SimQ^+$ to be optimal for $p = 2, \infty$.

In Conclusion

Theorem

- 1. For $1\leq p<2$, $r^*(T,p)=\tilde{\Theta}(d).$
- Similar to vector quantization: one bit per dim is needed 2. For $2 \le p$,

$$d^{\frac{2}{p}} \vee \log d \lesssim r^*(T,p) \lesssim d^{\frac{2}{p}} \log(d^{1-\frac{2}{p}}+1).$$

Different from classical vector quantization problem!

Thank You!