Limits on gradient compression for stochastic optimization

Prathamesh Mayekar

Joint work with
Himanshu Tyagi
Department of ECE, Indian Institute of Science

The Setup

Classical Setup ${ }^{1}$

Algorithm π

Algorithm π :

- Input: Domain \mathcal{X}, function and oracle class \mathcal{O}
- Goal: Minimize unknown function f using an oracle O, where $\{f, O\}$ belong to \mathcal{O}.
${ }^{1}$ Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Classical Setup ${ }^{1}$

Algorithm π :

- Input: Domain \mathcal{X}, function and oracle class \mathcal{O}
- Goal: Minimize unknown function f using an oracle O, where $\{f, O\}$ belong to \mathcal{O}.
First Order Oracle O :
- Returns a noisy sub-gradient estimate $\hat{g}\left(x_{t}\right)$ for query x_{t}.

[^0]Classical Setup ${ }^{1}$

Algorithm π :

- Input: Domain \mathcal{X}, function and oracle class \mathcal{O}
- Goal: Minimize unknown function f using an oracle O, where $\{f, O\}$ belong to \mathcal{O}.
First Order Oracle O :
- Returns a noisy sub-gradient estimate $\hat{g}\left(x_{t}\right)$ for query x_{t}.

Main Question:
Which π gives the best convergence rate?
${ }^{1}$ Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

Our Refinement

$\hat{g}\left(x_{t}\right)$ can be sent to a finite precision r using a Q of our choice.

Our Refinement

$\hat{g}\left(x_{t}\right)$ can be sent to a finite precision r using a Q of our choice. Reduces to classical setup if we are allowed infinite precision.

Our Refinement

$\hat{g}\left(x_{t}\right)$ can be sent to a finite precision r using a Q of our choice. Reduces to classical setup if we are allowed infinite precision.

Main Question:
What is the minimum r to attain the convergence rate of classic case?
ℓ_{p} optimization family

ℓ_{p} optimization family

Assumptions:
Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

ℓ_{p} optimization family

Assumptions:
Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

- Function, Oracle class \mathcal{O}_{p} consists of all tuples $\{f, O\}$ such that

1. f is convex.

ℓ_{p} optimization family

Assumptions:
D Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

- Function, Oracle class \mathcal{O}_{p} consists of all tuples $\{f, O\}$ such that

1. f is convex.
2. Unbiased: $\mathbb{E}[\hat{g}(x) \mid x] \in \partial f(x)$.

ℓ_{p} optimization family

Assumptions:
Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

- Function, Oracle class \mathcal{O}_{p} consists of all tuples $\{f, O\}$ such that

1. f is convex.
2. Unbiased: $\mathbb{E}[\hat{g}(x) \mid x] \in \partial f(x)$.
3. Almost surely norm-bounded: $\|\hat{g}(x)\|_{q} \leq B$, where $q=\frac{p}{p-1}$.

ℓ_{p} optimization family

Assumptions:
Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

- Function, Oracle class \mathcal{O}_{p} consists of all tuples $\{f, O\}$ such that

1. f is convex.
2. Unbiased: $\mathbb{E}[\hat{g}(x) \mid x] \in \partial f(x)$.
3. Almost surely norm-bounded: $\|\hat{g}(x)\|_{q} \leq B$, where $q=\frac{p}{p-1}$.

- Minmax optimization accuracy

$$
\mathcal{E}(T, r, p):=\inf _{\pi \in \Pi_{T}} \inf _{Q \in \mathcal{Q}_{r}} \sup _{\{f, O\} \in \mathcal{O}} \mathbb{E}[f(x(\pi, Q))]-f^{*}
$$

ℓ_{p} optimization family

Assumptions:
Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

- Function, Oracle class \mathcal{O}_{p} consists of all tuples $\{f, O\}$ such that

1. f is convex.
2. Unbiased: $\mathbb{E}[\hat{g}(x) \mid x] \in \partial f(x)$.
3. Almost surely norm-bounded: $\|\hat{g}(x)\|_{q} \leq B$, where $q=\frac{p}{p-1}$.

- Minmax optimization accuracy

$$
\mathcal{E}(T, r, p):=\inf _{\pi \in \Pi_{T}} \inf _{Q \in \mathcal{Q}_{r}} \sup _{\{f, O\} \in \mathcal{O}} \mathbb{E}[f(x(\pi, Q))]-f^{*}
$$

- Classical Result: $\mathcal{E}(T, \infty, p)=\tilde{\Theta}\left(\frac{\left(d^{1 / 2-1 / p} \wedge 1\right) D B}{\sqrt{T}}\right)$.

ℓ_{p} optimization family

Assumptions:
Domain \mathcal{X} will be the ℓ_{p} ball of diameter D in \mathbb{R}^{d}.

- Function, Oracle class \mathcal{O}_{p} consists of all tuples $\{f, O\}$ such that

1. f is convex.
2. Unbiased: $\mathbb{E}[\hat{g}(x) \mid x] \in \partial f(x)$.
3. Almost surely norm-bounded: $\|\hat{g}(x)\|_{q} \leq B$, where $q=\frac{p}{p-1}$.

- Minmax optimization accuracy

$$
\mathcal{E}(T, r, p):=\inf _{\pi \in \Pi_{T}} \inf _{Q \in \mathcal{Q}_{r}} \sup _{\{f, O\} \in \mathcal{O}} \mathbb{E}[f(x(\pi, Q))]-f^{*}
$$

- We will characterize

$$
r^{*}(T, p):=\min \{r: \mathcal{E}(T, r, p) \approx \mathcal{E}(T, \infty, p)\}
$$

minimum precision at which the composed oracle starts behaving like the classic, unresticted oracle.

Characterizing $r^{*}(T, p)$

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d
$$

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d
$$

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d .
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d
$$

- Techniques from [Agarwal et al. 12], [Mayekar et al. 20].

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d .
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d
$$

- Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- We construct "difficult" oracles for optimization, compression.

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d .
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d .
$$

- Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- We construct "difficult" oracles for optimization, compression.
- For $p \in[1,2)$, the same oracle is "difficult" for optimization, compression.

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d .
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d .
$$

- Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- We construct "difficult" oracles for optimization, compression.
- For $p \in[1,2)$, the same oracle is "difficult" for optimization, compression.
- For $p \geq 2$, these two oracles differ:

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d .
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d .
$$

- Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- We construct "difficult" oracles for optimization, compression.
- For $p \in[1,2)$, the same oracle is "difficult" for optimization, compression.
- For $p \geq 2$, these two oracles differ:
- The difficult optimization oracle leads to the $\log d$ bound.

Lower Bound

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p) \gtrsim d .
$$

2. For $2 \leq p$,

$$
r^{*}(T, p) \gtrsim d^{\frac{2}{p}} \vee \log d .
$$

- Techniques from [Agarwal et al. 12], [Mayekar et al. 20].
- We construct "difficult" oracles for optimization, compression.
- For $p \in[1,2)$, the same oracle is "difficult" for optimization, compression.
- For $p \geq 2$, these two oracles differ:
- The difficult optimization oracle leads to the $\log d$ bound.
- The difficult compression oracle gives the $d^{2 / p}$ bound.

Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, \exists algorithm π such that

$$
\mathcal{E}(T, \infty, p) \cdot\left(\frac{\alpha(Q ; p)}{B}\right) \geq \sup _{(f, O) \in \mathcal{O}_{p}} \mathcal{E}\left(f, \pi^{Q O}, p\right)
$$

Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, \exists algorithm π such that

$$
\begin{gathered}
\mathcal{E}(T, \infty, p) \cdot\left(\frac{\alpha(Q ; p)}{B}\right) \geq \sup _{(f, O) \in \mathcal{O}_{p}} \mathcal{E}\left(f, \pi^{Q O}, p\right) . \\
\alpha(Q ; p) \triangleq \sup _{Y \in \mathbb{R}^{d}:\|Y\|_{q}^{2} \leq B^{2} \text { a.s. }} \sqrt{\mathbb{E}\left[\|Q(Y)\|_{q}^{2}\right]}, \quad p \in[1,2) . \\
\alpha(Q ; p) \triangleq \sup _{Y \in \mathbb{R}^{d}:\|Y\|_{q}^{2} \leq B^{2} \text { a.s. }} \sqrt{\mathbb{E}\left[\|Q(Y)\|_{2}^{2}\right]}, \quad p \in[2, \infty] .
\end{gathered}
$$

Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, \exists algorithm π such that

$$
\begin{gathered}
\mathcal{E}(T, \infty, p) \cdot\left(\frac{\alpha(Q ; p)}{B}\right) \geq \sup _{(f, O) \in \mathcal{O}_{p}} \mathcal{E}\left(f, \pi^{Q O}, p\right) . \\
\alpha(Q ; p) \triangleq \sup _{Y \in \mathbb{R}^{d}:\|Y\|_{q}^{2} \leq B^{2} \text { a.s. }} \sqrt{\mathbb{E}\left[\|Q(Y)\|_{q}^{2}\right]}, \quad p \in[1,2) . \\
\alpha(Q ; p) \triangleq \sup _{Y \in \mathbb{R}^{d}:\|Y\|_{q}^{2} \leq B^{2} \text { a.s. }} \sqrt{\mathbb{E}\left[\|Q(Y)\|_{2}^{2}\right]}, \quad p \in[2, \infty] .
\end{gathered}
$$

Design Q such that:1) Unbiased; 2) $\alpha(Q ; p)$ is $O(B)$;
3a) Precision is $O\left(d^{2 / p} \vee \log d\right)$ for $p \in[2, \infty]$;
3b) Precision is $O(d)$ for $p \in[1,2)$.

Achievability for $p \in[1,2)$

Quantizer for $p \in[1,2)$

Input Y such that $\|Y\|_{q} \leq B$.

Quantizer for $p \in[1,2)$

$$
\text { Input } Y \text { such that }\|Y\|_{q} \leq B
$$

Split Y such that
$Y_{1}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)| \leq c\}} e_{i}, \quad Y_{2}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)|>c\}} e_{i}$,
where $c=O\left(\frac{B \log \left(d^{1 / 2-1 / q}\right)^{1 / q}}{d^{1 / q}}\right)$.

Quantizer for $p \in[1,2)$

$$
\text { Input } Y \text { such that }\|Y\|_{q} \leq B
$$

Split Y such that
$Y_{1}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)| \leq c\}} e_{i}, \quad Y_{2}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)|>c\}} e_{i}$,
where $c=O\left(\frac{B \log \left(d^{1 / 2-1 / q}\right)^{1 / q}}{d^{1 / q}}\right)$.
Y_{1} has small infinity norm; so, a uniform quantizer is good enough.

Quantizer for $p \in[1,2)$

$$
\text { Input } Y \text { such that }\|Y\|_{q} \leq B
$$

Split Y such that
$Y_{1}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)| \leq c\}} e_{i}, \quad Y_{2}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)|>c\}} e_{i}$,
where $c=O\left(\frac{B \log \left(d^{1 / 2-1 / q}\right)^{1 / q}}{d^{1 / q}}\right)$.
Y_{1} has small infinity norm; so, a uniform quantizer is good enough.
Y_{2} is sparse; so, an efficient quantizer for ℓ_{2} norm is good enough.

Quantizer for $p \in[1,2)$

Input Y such that $\|Y\|_{q} \leq B$.
Split Y such that
$Y_{1}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)| \leq c\}} e_{i}, \quad Y_{2}:=\sum_{i=1}^{d} Y(i) \mathbb{1}_{\{|Y(i)|>c\}} e_{i}$,
where $c=O\left(\frac{B \log \left(d^{1 / 2-1 / q}\right)^{1 / q}}{d^{1 / q}}\right)$.
Y_{1} has small infinity norm; so, a uniform quantizer is good enough.
Y_{2} is sparse; so, an efficient quantizer for ℓ_{2} norm is good enough.
Theorem
$\mathbb{E}[Q(Y) \mid Y]=Y ; \quad \alpha(Q, p) \leq 4 B ;$
Precision is $O\left(d+\frac{d}{q} \log \log \left(d^{1 / 2-1 / q}\right)\right)$ bits.

Achievability for $p \in[2, \infty]$

Our Quantizer SimQ

Input Y such that $\|Y\|_{q} \leq B$

Our Quantizer $\operatorname{Sim} Q$

Input Y such that $\|Y\|_{q} \leq B \Rightarrow\|Y\|_{1} \leq B d^{1 / p}$.
Encoder

- Sample an i from the set $\{0\} \cup[d]$ with a pmf P, where
- $\forall i \in[d], P(i)=|Y(i)| / B d^{1 / p}$
- $P(0)=1-\|Y\|_{1} / B d^{1 / p}$

Our Quantizer SimQ

Input Y such that $\|Y\|_{q} \leq B \Rightarrow\|Y\|_{1} \leq B d^{1 / p}$.
Encoder

- Sample an i from the set $\{0\} \cup[d]$ with a pmf P, where
- $\forall i \in[d], P(i)=|Y(i)| / B d^{1 / p}$
- $P(0)=1-\|Y\|_{1} / B d^{1 / p}$
- Send i and sign of $Y(i)$.

Our Quantizer SimQ

Input Y such that $\|Y\|_{q} \leq B \Rightarrow\|Y\|_{1} \leq B d^{1 / p}$.
Encoder

- Sample an i from the set $\{0\} \cup[d]$ with a pmf P, where
- $\forall i \in[d], P(i)=|Y(i)| / B d^{1 / p}$
- $P(0)=1-\|Y\|_{1} / B d^{1 / p}$
- Send i and sign of $Y(i)$.

Decoder
\Rightarrow Output $B d^{1 / p} \cdot \operatorname{sign}(Y(i)) \cdot e_{i}$

Our Quantizer SimQ

Input Y such that $\|Y\|_{q} \leq B \Rightarrow\|Y\|_{1} \leq B d^{1 / p}$.
Encoder

- Sample an i from the set $\{0\} \cup[d]$ with a pmf P, where
- $\forall i \in[d], P(i)=|Y(i)| / B d^{1 / p}$
- $P(0)=1-\|Y\|_{1} / B d^{1 / p}$
- Send i and sign of $Y(i)$.

Decoder
\Rightarrow Output $B d^{1 / p} \cdot \operatorname{sign}(Y(i)) \cdot e_{i}$

Theorem

$\mathbb{E}[Q(Y) \mid Y]=Y ;$ Precision is $\log (2 d+1)$ bits; $\alpha(Q, p)=B d^{1 / p}$.

Our Quantizer $\operatorname{Sim} Q^{+}$

- Apply $\operatorname{Sim} Q k$ times.
- Output the average of k outputs of $\operatorname{Sim} Q$.

Our Quantizer $\operatorname{Sim} Q^{+}$

- Apply $\operatorname{Sim} Q k$ times.
- Output the average of k outputs of $\operatorname{Sim} Q$.
- (Compression step) Represent the vector of indices using its type.

Our Quantizer $\operatorname{Sim} Q^{+}$

- Apply $\operatorname{Sim} Q k$ times.
- Output the average of k outputs of $\operatorname{Sim} Q$.
- (Compression step) Represent the vector of indices using its type.

Theorem
$\mathbb{E}[Q(Y) \mid Y]=Y ; \quad$ Precision is $k \log e+k \log \left(\frac{d}{k}+1\right)+k$ bits;
$\alpha(Q, p) \leq \sqrt{\frac{B^{2} d^{\frac{2}{p}}}{k}+B^{2}}$.

Our Quantizer $\operatorname{Sim} Q^{+}$

- Apply $\operatorname{SimQ} k$ times.
- Output the average of k outputs of $\operatorname{Sim} Q$.
- (Compression step) Represent the vector of indices using its type.

Theorem

$\mathbb{E}[Q(Y) \mid Y]=Y ; \quad$ Precision is $k \log e+k \log \left(\frac{d}{k}+1\right)+k$ bits;
$\alpha(Q, p) \leq \sqrt{\frac{B^{2} d^{\frac{2}{p}}}{k}+B^{2}}$.
By choosing $k=d^{\frac{2}{p}}$, we get $\operatorname{Sim} Q^{+}$to be optimal for $p=2, \infty$.

In Conclusion

Theorem

1. For $1 \leq p<2$,

$$
r^{*}(T, p)=\tilde{\Theta}(d)
$$

Similar to vector quantization: one bit per dim is needed
2. For $2 \leq p$,

$$
d^{\frac{2}{p}} \vee \log d \lesssim r^{*}(T, p) \lesssim d^{\frac{2}{p}} \log \left(d^{1-\frac{2}{p}}+1\right)
$$

Different from classical vector quantization problem!

Thank You!

[^0]: ${ }^{1}$ Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and method efficiency in optimization.

