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Classical Setup 1

Algorithm π

Algorithm π:

� Input: Domain X , function and oracle class O
� Goal: Minimize unknown function f using an oracle O, where
{f,O} belong to O.

First Order Oracle O:

� Returns a noisy sub-gradient estimate ĝ(xt) for query xt.

Main Question:
Which π gives the best convergence rate?

1Nemirovsky, A. S., and Yudin, D. B. (1983). Problem complexity and
method e�ciency in optimization. 2
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Our Re�nement

Algorithm π

Update xt

First Order

Oracle O

xt

ĝ(xt) Q(ĝ(xt))

Q

r bits

ĝ(xt) can be sent to a �nite precision r using a Q of our choice.

Reduces to classical setup if we are allowed in�nite precision.

Main Question:

What is the minimum r to attain the convergence rate of classic
case?

3



Our Re�nement

Algorithm π

Update xt

First Order

Oracle O

xt
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`p optimization family

Assumptions:
I Domain X will be the `p ball of diameter D in Rd.

I Function, Oracle class Op consists of all tuples {f,O} such
that
1. f is convex.

2. Unbiased: E [ĝ(x)|x] ∈ ∂f(x).

3. Almost surely norm-bounded: ‖ĝ(x)‖q ≤ B, where q =
p

p− 1
.

I Minmax optimization accuracy

E(T, r, p) := inf
π∈ΠT

inf
Q∈Qr

sup
{f,O}∈O

E [f(x(π,Q))]− f∗.
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I Minmax optimization accuracy

E(T, r, p) := inf
π∈ΠT

inf
Q∈Qr

sup
{f,O}∈O

E [f(x(π,Q))]− f∗.

I Classical Result: E(T,∞, p) = Θ̃

(
(d1/2−1/p ∧ 1)DB√

T

)
.
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Assumptions:
I Domain X will be the `p ball of diameter D in Rd.
I Function, Oracle class Op consists of all tuples {f,O} such

that
1. f is convex.

2. Unbiased: E [ĝ(x)|x] ∈ ∂f(x).
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p
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I Minmax optimization accuracy

E(T, r, p) := inf
π∈ΠT

inf
Q∈Qr

sup
{f,O}∈O

E [f(x(π,Q))]− f∗.

I We will characterize

r∗(T, p) := min{r : E(T, r, p) ≈ E(T,∞, p)},
minimum precision at which the composed oracle starts
behaving like the classic, unresticted oracle. 5



Characterizing r∗(T, p)
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Lower Bound

Theorem

1. For 1 ≤ p < 2,
r∗(T, p) ' d.

2. For 2 ≤ p,
r∗(T, p) ' d

2
p ∨ log d.

I Techniques from [Agarwal et al. 12], [Mayekar et al. 20].

I We construct �di�cult� oracles for optimization, compression.

I For p ∈ [1, 2), the same oracle is �di�cult� for optimization,
compression.

I For p ≥ 2, these two oracles di�er:
I The di�cult optimization oracle leads to the log d bound.
I The di�cult compression oracle gives the d2/p bound.
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Convergence with compressed gradients

Theorem

Consider an unbiased quantizer Q. Then, ∃ algorithm π such that

E(T,∞, p) ·
(
α(Q; p)

B

)
≥ sup

(f,O)∈Op

E(f, πQO, p).

α(Q; p) , sup
Y ∈Rd:‖Y ‖2q≤B2 a.s.

√
E
[
‖Q(Y )‖2q

]
, p ∈ [1, 2).

α(Q; p) , sup
Y ∈Rd:‖Y ‖2q≤B2 a.s.

√
E
[
‖Q(Y )‖22

]
, p ∈ [2,∞].

Design Q such that : 1) Unbiased; 2) α(Q; p) is O(B);

3a) Precision is O
(
d2/p ∨ log d

)
for p ∈ [2,∞];

3b) Precision is O(d) for p ∈ [1, 2).
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Achievability for p ∈ [1, 2)

9



Quantizer for p ∈ [1, 2)

Input Y such that ‖Y ‖q ≤ B.

Split Y such that
Y1 :=

∑d
i=1 Y (i)1{|Y (i)|≤c}ei, Y2 :=

∑d
i=1 Y (i)1{|Y (i)|>c}ei,

where c = O

(
B log(d1/2−1/q)

1/q

d1/q

)
.

Y1 has small in�nity norm; so, a uniform quantizer is good enough.

Y2 is sparse; so, an e�cient quantizer for `2 norm is good enough.

Theorem

E [Q(Y )|Y ] = Y ; α(Q, p) ≤ 4B;

Precision is O
(
d+ d

q log log(d1/2−1/q)
)

bits.
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Achievability for p ∈ [2,∞]
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Our Quantizer SimQ

Input Y such that ‖Y ‖q ≤ B

⇒ ‖Y ‖1 ≤ Bd1/p

.

Encoder

I Sample an i from the set {0} ∪ [d]
with a pmf P , where

I ∀i ∈ [d], P (i) = |Y (i)|/Bd1/p

I P (0) = 1− ‖Y ‖1 /Bd1/p

I Send i and sign of Y (i).

Decoder

I Output Bd1/p · sign(Y (i)) · ei

Y

Theorem

E [Q(Y )|Y ] = Y ; Precision is log(2d+ 1) bits; α(Q, p) = Bd1/p.

12



Our Quantizer SimQ

Input Y such that ‖Y ‖q ≤ B ⇒ ‖Y ‖1 ≤ Bd1/p.

Encoder

I Sample an i from the set {0} ∪ [d]
with a pmf P , where

I ∀i ∈ [d], P (i) = |Y (i)|/Bd1/p

I P (0) = 1− ‖Y ‖1 /Bd1/p

I Send i and sign of Y (i).

Decoder

I Output Bd1/p · sign(Y (i)) · ei

Y

Theorem

E [Q(Y )|Y ] = Y ; Precision is log(2d+ 1) bits; α(Q, p) = Bd1/p.

12



Our Quantizer SimQ

Input Y such that ‖Y ‖q ≤ B ⇒ ‖Y ‖1 ≤ Bd1/p.

Encoder

I Sample an i from the set {0} ∪ [d]
with a pmf P , where

I ∀i ∈ [d], P (i) = |Y (i)|/Bd1/p

I P (0) = 1− ‖Y ‖1 /Bd1/p

I Send i and sign of Y (i).

Decoder

I Output Bd1/p · sign(Y (i)) · ei

Y

Theorem

E [Q(Y )|Y ] = Y ; Precision is log(2d+ 1) bits; α(Q, p) = Bd1/p.

12



Our Quantizer SimQ

Input Y such that ‖Y ‖q ≤ B ⇒ ‖Y ‖1 ≤ Bd1/p.

Encoder

I Sample an i from the set {0} ∪ [d]
with a pmf P , where

I ∀i ∈ [d], P (i) = |Y (i)|/Bd1/p

I P (0) = 1− ‖Y ‖1 /Bd1/p

I Send i and sign of Y (i).

Decoder

I Output Bd1/p · sign(Y (i)) · ei

Y

Theorem

E [Q(Y )|Y ] = Y ; Precision is log(2d+ 1) bits; α(Q, p) = Bd1/p.

12



Our Quantizer SimQ

Input Y such that ‖Y ‖q ≤ B ⇒ ‖Y ‖1 ≤ Bd1/p.

Encoder

I Sample an i from the set {0} ∪ [d]
with a pmf P , where

I ∀i ∈ [d], P (i) = |Y (i)|/Bd1/p

I P (0) = 1− ‖Y ‖1 /Bd1/p

I Send i and sign of Y (i).

Decoder

I Output Bd1/p · sign(Y (i)) · ei

Y

Theorem

E [Q(Y )|Y ] = Y ; Precision is log(2d+ 1) bits; α(Q, p) = Bd1/p.

12



Our Quantizer SimQ+

I Apply SimQ k times.

I Output the average of k outputs of SimQ.

I (Compression step) Represent the vector of indices using its
type.

Theorem

E [Q(Y )|Y ] = Y ; Precision is k log e+ k log( dk + 1) + k bits;

α(Q, p) ≤

√
B2d

2
p

k +B2.

By choosing k = d
2
p , we get SimQ+ to be optimal for p = 2,∞.
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In Conclusion

Theorem

1. For 1 ≤ p < 2,
r∗(T, p) = Θ̃(d).

Similar to vector quantization: one bit per dim is needed

2. For 2 ≤ p,

d
2
p ∨ log d . r∗(T, p) . d

2
p log(d

1− 2
p + 1).

Di�erent from classical vector quantization problem!
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Thank You!

15


