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The Setup

Algorithm π

Update xt

First Order

Oracle O

xt

ĝ(xt) Q(ĝ(xt))

Q

r bits

ĝ(xt) can be sent to a �nite precision r using a Q of our choice.

Main Question:

Which {π,Q} gives the best convergence rate for r bits and T queries?
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Assumptions

I Domain X will be the Euclidean ball of diameter D in Rd.

I Function, Oracle class O consists of all tuples {f,O} such
that

1. f is convex.

2. Unbiased: E [ĝ(x)|x] ∈ ∂f(x).

3. Almost surely norm-bounded: ‖ĝ(x)‖2 ≤ B.

Our Goal:

I Characterize
E(T, r) := inf

π∈ΠT

inf
Q∈Qr

sup
{f,O}∈O

E [f(x(π,Q))]− f∗

worst-case gap to optimality using " joint-best"
T query optimzation algo and r bit quantizer.

I Classical Result: E(T,∞) = Θ

(
DB√
T

)
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Lower bound

Theorem

E(T, r) ≥ Ω

(
DB√
T
·
√

d

d ∧ r

)

Goal: Matching upper bound for any precision constraint r.

Previous work: PSGD +

I Uniform Quantization ⇒ upper bound o� by
√

log d.
I Random rotation based quantizer in [Suresh et al. 17] ⇒

upper bound o� by
√

log log d.
I Variable length quantizers in [Alistarh et al. 17] and [Suresh et

al. 17] ⇒ upper `can' be o� by
√

log d.

We will show a tighter upper bound of
√

log ln∗ d.
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Convergence with compressed gradients

We use Projected Subgradient descent (PSGD) with compressed
gradients.

Theorem

Consider an unbiased, r-bit quantizer Q. Then,

E(T, r) ≤ D · α(Q)√
T

,

where α(Q) := sup
Y ∈Rd:‖Y ‖22≤B2

a.s.

√√√√E
[
‖Q(Y )− Y ‖22

]
︸ ︷︷ ︸

MSE

+B2.

Find the minimum MSE Quantizer of the `2 ball

s.t. 1) Precision is r bits, 2) Unbiased.
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RATQ: Our quantizer for the `2 ball

Input to RATQ: Y such that ‖Y ‖2 ≤ B.

-B B0

-M1 M1-M1 M1-Mh−1 Mh−1-Mh−1 Mh−1-M2 M2

1. Rotate Y using randomized Hadamard transform.
I Leads to each coordinate being subgaussian with a variance

factor B2

d , instead of B2.

2. For each coordinate, choose smallest one of the intervals
[−Mi,Mi] containing it and quantize uniformly to k levels.

3. Per coordinate precision is log h+ log k bits.

Per coordinate MSE ≈ 1

(k − 1)2

∑
i∈[h]

M2
i · p(Mi−1),

p(M) is the prob. of the absolute value exceeding M .

4. M2
i+1 ≈ eM

2
i (tetration).
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Complete characterization of E(T, r)

I RATQ uses a per coordinate precision of log ln∗ d to get
α(Q) = O(B).

I To make it work for r (< d) bits, uniformly sample r
log ln∗ d

coordinates; α(Q) = O

(
B ·
√
d log ln∗ d

r

)
.

Theorem

c0DB√
T
·
√

d

d ∧ r
≤ E(T, r) ≤ c1DB√

T
·
√

d

d ∧ r
log ln∗ d
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Mean Square Bounded Oracles

`2 Case: Instead of ‖ĝ(x)‖22 ≤ B2, we have E
[
‖ĝ(x)‖22

]
≤ B2.

We may not be able to �nd an unbiased quantizer.

Use a gain-shape quantizer:

- express y ≡ (‖y‖2 , y/ ‖y‖2) and quantize each part
separately

�The gain quantizer must be carefully chosen�

Speci�cally, uniform quantizers have the following bottleneck:

I To attain DB/
√
T , r must exceed d+ log T

I We construct a �heavy-tailed� oracle for these bounds

RATQ combined with "adaptive geometric" gain quantizer requires
≈ d+ log log T bits to attain DB/

√
T rate.
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Concluding Remarks

Our quantizers:

I RATQ with PSGD attains optimal convergence for �xed
precision upto a

√
log ln∗ d factor

I A gain-shape variant of RATQ comes close to the optimal for
mean square bounded oracles.

Our lower bounds:

I For mean square bounded oracles:

- lower bound by constructing heavy tailed oracles
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Thank You!
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